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Chapter 1. Introductory Comments

The study of radiation interchange between individual surface ele-

ments in a system is required in a variety of engineering disciplines

including applied optics, illumination engineering, and heat transfer.

Indeed, such studies have been conducted for many years as evidenced

by the publication dates of references 1 and 2. More recently the study

of radiant interchange has been given impetus by technological advances

that have resulted in systems where thermal radiation can be a very

significant factor. Some examples are satellite temperature control,

energy leakage into cryogenic vacuum systems, high-temperature phe-

nomena in hypersonic flight, and the heat transfer in nuclear propulsion

systems.

1.1 ENCLOSURE THEORY

In this volume the theory will be developed for computing thermal

radiation exchanges within enclosures. First it must be understood what

is meant by an enclosure. Any surface can be considered as completely

surrounded by an envelope of other solid surfaces or open areas. This

envelope is the enclosure for the surface; thus an enclosure accounts
for all directions surrounding the surface. By considering the radiation

going from the surface to all parts of the enclosure, and the radiation

arriving at the surface from all parts of the enclosure, it is assured that

all the radiative contributions are accounted for. In working a problem,

a convenient enclosure will usually be evident from the physical con-

figuration. An opening can be considered as a plane of zero reflectivity.
It will also act as a source of radiation when radiation is entering the

enclosure from the environment.

All the enclosures considered here will be subject to the assumption

that the medium in the space between the surfaces is perfectly trans-

parent and thus does not participate in the radiative interchange. For

an enclosure filled with a radiating material such as a gas containing

water vapor, carbon dioxide, or smoke, the theory will be treated in

volume III of this series.

Reference 3, which is volume I of this series, discusses in detail the

radiative properties of solid surfaces. It was demonstrated that for some

materials there are substantial variations of properties with wavelength,

surface temperature, and direction. For radiation computations within

enclosures, the geometric effects governing how much radiation from one

surface reaches another is a complication in addition to the variations
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of the surface properties. For simple geometries it may be possible to

account in detail for property variations without the problem becoming

unduly complex. As the geometry becomes more involved, it is often
necessary to invoke more idealizations of the surface properties in order

that the problem can be solved with reasonable effort.
The treatment presented here could begin with the most general

situation where properties vary with wavelength, temperature, and

direction, and where the radiation fluxes vary arbitrarily over the en-

closure surfaces. All other situations would then be simplified special

cases. However, this would entail the uninitiated reader plunging into
the most complex treatment, which would be very difficult to understand.

Hence the development presented here will begin with the most simple
situation; successive complexities will then be added to build more

comprehensive treatments.

1.1.1 Ideal Enclosures

The greatest simplification is td assume that all the enclosure surfaces
are black. In this instance there is no reflected radiation to be accounted

for. Also, all the emitted energy is diffuse; that is, the intensity leaving

a given isothermal surface is independent of direction. The exchange

theory for a black enclosure is presented in chapter 2. The heat balances
involve the enclosure geometry, which governs how much radiation

leaving a surface will reach another surface. The geometric effects are
expressed in terms of diffuse configuration factors; these factors are the

fractions of radiation leaving a surface that reach another surface. The
factors are derived on the basis that the directional distribution of radia-

tion leaving a surface is diffuse and uniformly distributed, and these
restrictions should be kept in mind when the factors are applied in
nonblack enclosures.

The computation of configuration factors involves integration over
the solid angles by which the surfaces can view each other. Since these

integrations are often tedious, it is desirable to use certain useful rela-
tions that exist between configuration factors. By using these relations,

the desired factor can often be obtained from factors that are already
known, and the integration will not have to be performed. These rela-

tions, along with various shortcut methods that can be used to obtain

configuration factors, are presented in detail in chapter 2. An appendix
is also provided giving references where configuration factors can be

found for approximately 150 different geometrical configurations.
After analyzing the black enclosure, the next step of complexity is

an enclosure with gray surfaces that emit and reflect diffusely. It is also

assumed that both the emitted and reflected energies are uniform over
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each surface. For these conditions the diffuse configuration factors found

for black surfaces still apply for the radiation leaving a surface. For gray

surfaces, reflections between surfaces must be accounted for. This is

done in chapter 3 by using a method developed by Poljak.

Another type of ideal surface is a perfect mirror reflector. The emission

from this type of surface is approximated as being diffuse; hence, the

emitted energy, is treated by using the diffuse configuration factors. The

reflected energy, however, is followed within the enclosure by using the
characteristics of a mirror where the angle of reflection is equal in mag-

nitude to the angle of incidence. The method of tracing the reflected

radiation paths and deriving the necessary heat balances is treated in

chapter 4.

1.1.2 Nonideal Enclosures

In some instances the black or diffuse-gray approximations are inade-

quate and directional and/or spectral effects must be considered. The

necessity of treating spectral effects was noticed quite early in the field

of radiative transfer. In the remarkable paper (ref. 4) published in 1800

by Sir William Herschel entitled "Investigation of the Powers of the

Prismatic Colours to Heat and Illuminate Objects; with Remarks, that

prove the Different Refrangibility of Radiant Heat to which is added,

an Inquiry into the Method of Viewing the Sun Advantageously, with

Telescopes of large Apertures and High Magnifying Powers." appears

the following statement: "In a variety of experiments I have occasionally

made, relating to the method of viewing the sun, with large telescopes,

to the best advantage, I used various combinations of differently coloured

darkening glasses. What appeared remarkable was, that when I used

some of them, [ felt a sensation of heat, though I had but little light;

while others gave me much light, with scarce any sensation of heat.

Now, as in these different combinations, the suns image was also dif-

ferently coloured, it occurred to me, that the prismatic rays might have

the power of heating bodies very unequally distributed among

them .... " This paper was the first in which what is now called the

infrared region of the spectrum was defined and the energy radiated as

"heat" shown to be of different wavelengths than those for "light.'"

The quotation shows an awareness that in some instances spectral
effects must be included in the radiative analysis. The performance of

spectrally selective surfaces such as are used in satellite temperature
control and for solar collector surfaces can be understood only by con-

sidering the wavelength variations of the surface properties.

A second nonideal surface property is that of strong directional

dependence. In volume I of this work (ref. 3), a number of directionaUy
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dependent surface properties were examined, and some were shown to

differ considerably from the diffuse or specular approximations. A good

example is the lunar surface, which has a distribution of reflected energy

strongly peaked back into the direction of incident radiation. This is in

a sense the opposite of a specular reflector and can certainly not be con-
sidered diffuse.

Methods for treating surfaces that are nonideal in either spectral or

directional properties, or both, are examined in chapters 5 and 6. Chapter

5 continues the enclosure theory development of the previous chapters.

Chapter 6 deals with an alternate approach-the Monte Carlo method.

This is a general technique that involves following "bundles" of radiant

energy along their paths within an enclosure. It can be applied to all

types of radiation problems but is usually too detailed and costly in terms

of computer time for use in simple situations. When directional and

spectral effects must be considered, the Monte Carlo method is very
valuable.

1.? ENERGY TRANSFER BY COMBINED MODES

Chapter 7 deals with problems where conduction and/or convection

is combined with radiative heat transfer. Since only opaque surfaces axe

being dealt with here, the radiative interaction with a body is considered

to occur only at the surface. Thus the radiation serves only as a boundary

condition with regard to the conduction process within a body. This is

analogous to the convective boundary condition at a surface. When a

body is undergoing a transient temperature change, the radiative terms

are applied at each instant when solving the energy balances governing

the temperature distribution within the body.

The heat conduction process is governed by local derivatives of the

first power of the temperature. The convection process depends on local

differences between the first power of the fluid and surface temperatures.

Radiative exchange, however, depends approximately on differences of

fourth powers of the surface temperatures and also depends on the

integral of the radiation incident from all the surroundings of the surface.

As a result, the energy balance for a combined convection, conduction,

and radiation problem can result in an integrodifferential equation.

There are few standard mathematical methods for attacking these

equations, and few closed-form analytical solutions are available. Nu-

merical methods are usually employed for multimode problems.

1.3 NOTATION

The notation employed here is the same as in volume I of this pub-
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lication(ref.3) and is now brieflyreviewed. A prime denotes a direc-

tionalquantity,while a k subscriptspecifiesthat the quantity isspectral;

for example, e_ isthe directionalspectral emissivity.Certain quantities

such as bidirectionalreflectivitiescan depend on two directions,that is,

the directions of the incoming and outgoing radiation.These bidirec-

tionalquantitiesare denoted by a double prime. A hemispherical quan-

titywillnot have a prime, and a totalquantity willnot have a ),subscript;

thus _ is the hemispherical total emissivity. In addition a notation such

as E_(k, t, 0, T) can be used to emphasize the functional dependencies or

to state more specifically at what wavelength, angle, and surface tem-

perature the quantity is being evaluated.

Additional notation is needed for the energy rate Q for a finite area in

order to keep consistent mathematical forms for energy balances. The

quantity d2Q;, is directional-spectral, and the second derivative is used

to indicate that the energy is of differential order in both wavelength and

solid angle. The quantities dQ' and dQx are of differential order with

respect to solid angle and wavelength, respectively. If a differential area

is involved, the order of the derivative is correspondingly increased.

1.4CONCLUDING REMARKS

As mentioned previously, certain restrictions to ideal surfaces and

nonpanicipating media are present in each of the chapters that follow.

In addition, some phenomena that are rather more specialized than is

the intent of this work can be of importance in certain situations. For

example, effects of polarization can lead to errors in energy transfer cal-

culations if ignored under special conditions of geometry (ref. 5). Inter-

ference effects (ref. 6), chemical and photochemical phenomena (refs.

7 to 10), and perhaps others can in some situations be the dominant

mechanisms governing the radiative transfer. The reader can only be

referred to the specialized literature and warned to watch for such cases.
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Chapter 2. Exchange of Radiant Energy
Between Black Isothermal Surfaces

2.1INTRODUCTION

This chapter begins the discussion of radiation exchange between

surfaces and is concerned with the special situation where all the sur-
faces involved are black. Black surfaces are chosen to deal with first

since they are perfect absorbers, and the energy exchange process is
thus simplified because there is no reflected energy to be considered.

Also, all black surfaces emit in a perfectly diffuse fashion where the
radiation intensity leaving a surface is independent of the direction of

emission. This simplifies the computation of how much of this radiation
will reach another surface.

The fraction of the radiation leaving one surface that reaches another

surface is defined as the geometric configuration factor between the two

surfaces because it depends on the geometric orientation of the surfaces

with respect to each other. The geometric dependence is discussed here
for black surfaces, but the results have a wider generality as they will
apply for any uniform diffuse radiation leaving a surface. This geometric

dependence leads to some algebraic relations between the factors, and
these relations are demonstrated in this chapter for various surface

configurations. In table A-I of appendix A, a tabulation is provided of

references where known configuration factors can be found in the litera-

ture. Applications of these factors to example problems of engineering

interest are then examined for radiative energy exchange between two
surfaces.

After the relations for exchange between two surfaces have been

developed, the relations can be applied to any number of surfaces
arranged to form an enclosure of black surfaces each at a different

temperature. The general set of equations governing the exchange within
such an enclosure is developed, and some illustrative examples are

provided.

In chapter 3 the concepts developed in this chapter are extended for
use in systems with diffuse-gray surfaces, and succeeding chapters

introduce more and more complex systems. The concepts of the present
chapter are discussed at some length because they are fundamental to

the succeeding material dealing with less ideal surfaces.
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A

f
F

i

[, m, i't

N

P,O,R

Q
I"

S
T

U

x, y, z
a, %/5

o"

Subscripts:

b

dl, d2
i

j,k
N

ring
$

strip
k

1,2

2.2 SYMBOLS

area

emissive power
function defined by eq. (2-49b)

configuration factor
intensity

direction cosines, eq. (2-4%)
number of surfaces in an enclosure

functions in contour integration used in section 2.5.3.2
energy per unit time
radius
distance between two differential elements

temperature

number of unknowns in equations describing an N-sided
enclosure

Cartesian coordinate positions

angles in direction cosines

angle from normal
wavelength
Stefan-Boltzmann constant

solid angle

blackbody
evaluated at differential element dl or d2

inner

S'z or kth surface
Nu_ surface

ring area
Sun

elemental strip

wavelength dependent
at arealor2

Superscript:

denotes quantity is in one direction

2.3 RADIATIVE EXCHANGE BETWEENTWO DIFFERENTIALAREA ELEMENTS

The relationsdescribingradiativeexchange between differentialele-

ments areconsideredfirstastheywillbe usedinthesucceedingsections

toderivetherelationsforexchange between areasoffinitesize.Consider

two differentialblackareaelementsasshown infigure2-I.The elements
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Normal to dA,
\

\
\

•-dA 2 at T 2

-du 1

dA1 at T1 -,,\
\

Normal to dA 1

FIGURE 2-1.--Radiative interchange between two black differential area elements.

rid1 and dd_ are isothermal at temperatures T_ and T2, respectively, are

arbitrarily oriented, and have their normals at angles 13_and/32 to the line

of length S joining them.
Using the notation of reference 1 (which will be referred to from this

point as VoL I), the total energy per unit time leaving dAl and incident

upon dA_ is
d_O_t-_ =/_. 1 dA1 cos/it dtal (2-1)

where d_, is the solid angle subtended by dd2 when viewed from d,4_.

Equation (2-1) follows directly from the definition of i_, i, the total black-
body intensity of surface 1, as the total energy emitted by surface 1 per
unit time, per unit of area rid1 projected normal to S, and per unit of
solid angle. As in Vol. I, the prime indicates a quantity applied in a

single direction. The quantity _0' is a second differential to denote the

dependence upon two differential quantities, dd_ and &at.

Equation (2-1) can also be written for radiation at only one wavelength

daQ'_, d1-,_ = i_n. t ( k )dk d,4, cos j31dtol

The total radiation quantities are then found by integrating over all

wavelengths
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d2Q'dt-,n = d3Q_,,dl-_n = d,4, cos/31 doJt i_b. l(k) dh
o

For a black surface i_,o(k) does not depend on direction; hence, all the

geometric factors can be removed from under the integral sign, and the
integration over wavelength is independent of any geometrical consid-

erations. Thus the geometric configuration factor results that follow apply
for both spectral and total quantities. For simplicity in not having to

carry the k notation, the discussion will be carried out for total quantities.

The solid angle d_ot is related to the projected area of d,4_ and the
distance between the differential elements by the relation

dAz cos #2 (2-2)
daJa-- $2

Substituting this relation into equation (2-1)gives the following equation

for the total energy per unit time leaving d,qt that is incident upon dd2:

, ig,, dA, cosg, d.A2 cos _._
d Qnl-,,, = SZ (2-3)

An analogous derivation for the radiation leaving d,4_ that arrives at
dA, results in

iL_. dA2 cos#2 dAl cos#,
d2Q'___t = $2 (2-4)

For later use, d2Q ' has been defined in equations (2-3) and (2-4) as

the energy emitted by one element that is incident upon the second ele-
ment. For the special case of a black receiving element, all incident

energy is absorbed so that equations (2-3) and (2-4) in this case give

the energy from one element that is absorbed by the second. As will be
seen, the more general definition of d2Q ' allows the configuration factors
derived here for black surfaces to be used in certain other cases. These

will be examined at length in chapters 3 and 4.
2 tThe net energy per unit time d Q_l_,n exchanged from black element

an 'd.At to d.42 along path S is then the difference of d_'°"_aa-a=and Q,n-,n,

or from equations (2-3) and (2-4)

an , ., cos _, cos/32anO'd,=_ O,i,-_ - anO,_-d, - "'' --(tb, l--tb, 2) $2 dAl d,42

(2-5)
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From equation (2-21) of Vol. I, the blackbody total intensity is related
to the blackbody total hemispherical emissive power by

i_ = e___ o'T4 (2-6)
7r

so that equation (2-5) can be writteri as

d_O;,,_ = _(r__ T_) cos/3, cos _2 _, _2
ors z

(2-7)

EXAMPLE 2--1: The Sun emits energy at a rate that can be approxi-

mated by that of a blackbody at temperature 10400 ° R. A blackbody
area element in orbit around the Sun at the mean radius of the Earth's

orbit (92.9 x 10s mi) is oriented normal to the line connecting the centers
of the area element and Sun. If the Sun's radius is 4.32 × 10s miles, what

energy flux is incident upon the element?

To the element in orbit, the Sun appears as an isothermal disk element
of area

ddl = ¢rd = ¢r(4.32 × 10sF = 5.86 × 1011 mi 2

From equation (2-3), the incident energy flux on the element in orbit is

2 td Q_,_,,, ., cos/_, cos _z o-Tl dd,

0.173 × 10-s(1.04 × 104)4 5.86 × 10H =437 Btu/(hr)(ft 2)
¢r (92.9 x 10sF

This value is consistent with the range of measured values of the

mean solar constant, 420 to 454 Btu/(hr)(ftz).

Ex._u'ctPLE 2-2: As shown in figure 2-2, a black square of side 0.1 inch

is at temperature 1500_ F and is near a tube 0.1 inch in diameter. The

opening of the tube acts as a black surface, and the tube is at 800 ° F.
What is the net radiation exchange along the connecting path S between

the square and the tube opening?

From equation (2-7)

2 , - 4_ 4 d,41d-42d Q_,_,_-o'(T, T2 ) cos fl, cos/32orS2

The value of cos _1 is found from the known sides of the fight triangle

dA2- 0-- d,41 as

323-0030.-69--2
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I_2 -20_

21n.

(Ih, • 15C0°F ._2'

/- "/ /o
3in.

FIGUB£ 2"2.--Radiative exchange between square element and circular tube opening.

cos _,=21[(3)2+ (2)2]u2=21(13)u2

The other factorsin the energy exchange equation are given,and

substitutingthem gives

2 cos 20°

d_Q_tl=a2=0.173 x 10-*[(1960)'- (1260)'] (13),/z =(13/144)

[(°-I)'][_(°I)=I
x L 144 J L_J

= 1.48x 10-4Btu/hr

2.4 RADIATIVE GEOMETRIC CONFIGURATION FACTORS AND ENERGY

EXCHANGE BETWEEN TWO SURFACES

One of the chief mathematical complexities in treating radiative

transfer between surfaces is accounting for the geometric relations
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involved in how the surfaces view each other. These effects result

mathematically in integrations of the radiative interchange over the

finite areas involved in the exchange process. It would be helpful to

have, as much as possible, handbook results to account for these geo-

metric relations for often-encountered geometries. In this way repetitions

of the tedious integrations could be avoided.

In this section, a method of accounting for the geometry is introduced

in the form of a quantity called the geometric configuration factor. Such

factors allow computation of radiative transfer in many systems by

referring to formulas or tabulated data which have been been previously

obtained for the geometric relations between various surfaces. This

removes what is often the most time-consuming and error-prone portion

of the analysis.

2.4.1 Configuration Factor for Energy Exchange Between Differential
Elements

The fraction of energy leaving black surface element d.,41 that arrives

at black element d.,42 is defined as the geometric configuration factor

dFdl-,_. (Either the total or spectral energy could lie considered as

discussed with regard to equation (2-1), and the same results for dF

would be obtained. The total energy is used here for convenience in not

carrying the k notation.) Using equations (2-3) and (2-6), the previous

definition gives

d2Q_,_ _ o'T_ cos fl,_.S2c°s & d,4,d,42
dFdl-d2 ---_

crT__, crT_d.4,

cos/3t cos fl_&42 (2-8)
---- 7rSz

where o'I'41dAl is the total energy leaving a_4t within the entire hemi-

spherical solid angle over d,4_. Equation (2-8) shows that dFdl-a_ depends

only upon the size of dAz and its orientation with respect to d,41. By

substituting equation (2-2), equation (2-8) can also be written in the form

dFdl-_ = cos/31 doJ! (2-9)
71"

Consequently, all elements d,42 have ihe same configuration factor if

they subtend the same solid angle doJt when viewed from c/At and are

positioned along a path at angle flit with respect to the normal of d,4_.
The factor dFd_-a_ has a variety of names, being called the view, angle,

shape, interchange, exchange, or configuration factor. The last seems
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most specific, implying a dependence upon both orientation and shape,
the latter variable entering when finite areas are involved.

The notation used here for configuration factors is based on subscript
designation for the types of areas involved in the energy exchange and

a derivative notation consistent with the mathematical meaning of the
configuration factor. For the subscript notation, dl, d2, and so forth
will indicate differential area elements, while 1, 2, and so forth will

indicate areas of finite size. Thus dFdl-_ indicates a factor between

two differential elements, as in equation (2-8). The notation dFl-_

indicates a configuration factor from finite area A, to differential area dd_.

The derivative notation dF indicates that the configuration factor is

for energy transfer to a differential element, as in equation (2-8). This
is redundant with the subscript notation, but keeps the mathematical

form of equations (such as eq. (2-8)) consistent in that a differential
quantity appears on both sides (i.e., the expression for dF contains a

differential area). A configuration factor F denotes a factor to a finite
area. Thus F_l-z is the configuration factor from differential element

dr1 to finite area A2.

2.4.1.1 Reciprocity for differential element configuration factors.-
By a derivation similar to that used in obtaining equation (2-8), the

configuration factor needed for calculating energy exchange from
element ddz to rid1 is

cos _81cos _ d.41 (2-10)dF_-dl = rrS2

Dividing equation (2-8) by equation (2-10) gives the general reci-
procity relation

dFal_d, dAI = dFd2_a,d.Az = cos 1/! cos//_, d.41dAz (2-11)
ors 2

Finally, equation (2-7) for energy exchange along the path between

two black elements can be written by using equation (2-11): the result is

d2Q'_=_,=_r(T_- T_)dFa:__dAIfcr(T_- T_)dF_-aldA_. (2-12)

2.4.1.2 Some sample configuration factors between differential ele-
ments.-To this point, a series of algebraic manipulations has allowed
a reduction of the equation for the net radiative transfer along the path
between two black isothermal area elements to the apparently simple

form of equation (2-12). This was done by introduction of the con-

figuration factor dF which encompasses the geometric complexities.
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The derivation of configuration factors will now be illustrated by con-

sidering some sample cases.

EXAMPLE 2--3: The two elemental areas shown in figure 2-3 are

located on strips that have parallel generating lines. Derive an expres-

sion for the configuration factor between dr1 and dr2.

FlGtrlag 2-3.-Geometry for configuration factor between elements on strips formed by
parallel generating lines.

The distance S can be expressed as

S2= l2 + xz

and cos/31 is then

lcos¢_ lcos¢
cos/3, = _- (l_+ x2),12

The solid angle subtended by dA2, when viewed from dAl, is
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d_o, = (projected area of dAz)
Sz

----(projected width of dA2)(projected length of ddz)
S2

(1d,a)(dx cos _)= l dsodx l
S_ S2 S

Substituting into equation (2-9) gives

cosg_do_= lcos¢ 1 l 2dsodx
dFal-_ =

7r (/2 +x¢) tl: _- (12+x_)'tz

l s cos sodcdx
_m

w(/=+ xz)2

which is the desired configuration factor between ddl and &42.

EX.AMPLg 2-4: Find the configuration factor between an elemental

area and an ii_finitely long strip of differential width oriented as in

_strip, 2

_I Y

FIGURE 2-4.-Geometry for configuration factor between elemental area and infinitely

long strip of differential width; area and strip are on parallel generating lines.
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figure 2-4, so that the generating lines of dA, and dA,t_p.2 are parallel.

Example 2-3 gave the configuration factor between differential ele-
ment d_4_ and area element dAz of length dx as

Ia cos ¢ dedx
dFe_-_ = ¢r(lz+ xZ)Z

To find the factor when d.42 becomes an infinite strip as in figure 2--4,

integrate over all x to obtain

/3 COS _ d_ f_* dx

X X

13 c°s _° d_'° ['212(l_'+ x2) _'_-P tan-l (1)]-=lr

1cos
---- -'-= d(sin _)2 2

where the angle _o is in the y--z plane. This useful configuration factor

relation will be used in later examples.

Figure 2-4 also shows that, if element dA_ lies on an infinite strip
dA,t_p. _ with elements parallel to d.4,_p.2, the configuration factor

1

will be valid for dR, regardless of where dA, lies on d.4,t_p, t. Then,

since any element dA_ on dAw_p. _ has the same fraction of its energy

reaching dA,t,_p, 5, it follows that the fraction of energy from the entire

d,q,mr, t that reaches dA,t,_p. 2 is the same as the fraction for each ele-
ment d.dl. Thus, the configuration factor between two infinitely long

strips of differential width and having parallel generating lines must
also be the same as for element dA_ to dAst,_p. _, or ½d(sin _). The angle

_o is always in a plane normal to the generating lines of both strips.

EXAMPLE 2--5: Consider an infinitely long wedge-shaped groove as

shown in cross section in figure 2-5. Determine the configuration factor
between the differential strips dx and d_ in terms of x, _, and a.

As discussed in example 2-4, the configuration factor is given by

dFdx- _ = ½d( sin _o)==_cos _od¢.

From the construction in figure 2-5(b)
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ii

Ļ_'¸ L

(a}

dx

(a) Wedge-shaped _'oove geomeuT.

(b) Au_c_ry construction.

FIGURE 2-S.- Conllguration factor between two strips on s/des of wedge groove,

cos _o-----_ sin a
L

The quantity d¢ is the angle subtended by the projection of d._ normal
to L, that is,

de__ d_ cos (a+¢) __d_ x sin a
L L L

From the law of cosines

L2=_+_-2x_ cos a

Then
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1 1 x_: sin z tr
dF__at =_ cos _od_=_ L_ d_:

1 x_: sin" a
= 2 (x 2+ ¢_- 2xs_ cos a) 3n d4

2.4.2 Configuration Factor Between a Differential Element and a

Finite Area

Consider now an isothermal black element dd, at temperature /'1

exchanging energy with a surface of finite area A2 that is isothermal at

temperature /'2 as shown in figure 2-6. The relations developed for

exchange between differential elements must be extended to permit
A., to be finite. Figure 2-6 shows (compare the solid and dashed cases)

that the angle/32 will be different for different positions on A2 and that

8, and S will also vary as different differential elements on As are viewed
from dA1.

There are two configuration factors to be considered. The factor

Fdt-s is from the differential area dA_ to the finite area A2, and dFs-d_

is from As to dA,. Each of these will be considered by using the definition

of configuration factor as the fraction of energy leaving one surface that

/'-dA2
/

/

/ f

g - / r i

FIGURE 2--6.--Radiant interchange between differential element and finite area.
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reaches the second surface. To derive Fd_-z, note that the total energy

radiated from the black surface element dA1 is dQl=-o'T_dA1. The

energy reaching d//z located on Az is

d2Q;l_ _ ffi o.T4I cos/3, cos/_ dA, dA2
ors z

Then integrating over A2 to obtain the energy reaching all of A2, and

dividing by the total energy leaving dAl result in

Fal_2 ffifa I d_Q__,n= fA_ crT]
dQ,

cos _, cos t32dA,
ItS 2

o'T_ dA 1

d_2

=r cos/3, cos/32 d//z (2-13)
JAI 7/'32

where the integration limits on//z extend over only the portion that can
be viewed by t/At. From equation (2-8) the quantity inside the integral

of equation (2-13) is dFal-m, so that Fat-z can also be written as

Fal-: = fa, dFal-a2 (2-14)

This merely expresses the fact that the fraction of the energy reaching
Az is the sum of the fractions that reach all of the parts of//_.

Now consider the configuration factor from the finite area At to the
elemental area rid,. The energy reaching an elemental area dA_ from a

finite area A2 is, by integrating equation (2-4) over A2,

dO2-_tl= d//,fA ig.
S

cos _, cos_ f
$2 dA2=dA, j_ _T_ cos BI cos _dA_

z " 7/'32

(2-15)

The total hemispherical energy leaving .4.. is

Q_=fA, cT_dA_ (2-16)

The configuration factor dF2-al is then the ratio of dQ2-a_ to Q2 or
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or

The last integral on the right was obtained subject to the imposed
condition that .4z is isothermal. From equation (2-8) the quantity under

the integral in equation (2-17) is dFat-_ so the following alternate
form is obtained:

dF2_at =-_ fA dFa__a_ (2-18)

2.4.2.1 Reciprocity for configuration factor between differential and

finite areas.-By use of equation (2-14) the factor dF2-d_, as given
by equation (2-18), can be written as

d_!

dF,-,, = _ F,_,-2

A2 dF2-al = dAt Fat-2 (2-19)

which is a useful reciprocity relation.
2.4.2.2 Radiation interchange between differential and finite areas.-

The energy radiated from ddl that reaches A2 is from the definition of

the configuration factor

dQdl-2 -_ _rT_ dAi FdI-z

Similarly, that radiated by Az and reaching dAt is

dQ2 - dl ffi_rT_.A2 dF2- al

The net exchange from dAt to Az is

ffi crT_ d.41 F al-2 - crT_A2 dF2-al (2-20)

dAt fA crT_ cos #81cos/32 d.Az
dF.,-m = i ¢rSZ

A, crT] dA2

d.dt fA cos _1 cos/32 dA_ (2-17)="_/ , _S 2
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By use of the reciprocity relation in equation (2-19), the exchange

can be expressed in the alternate forms

dQ,nm = o'( T_- T_) d/l, Fat-z (2-21a)

dQ ,n_. = o.( T_ - T_)A2 dFz-a, (2-21b)

2.4.2.3 Some sample configuration factors involving a differential and a

finite area.-Certain geometries have configuration factors that can be

represented by a simple closed-form algebraic solution, while others
require numerical integration of equation (2-13). Configuration factors
can be tabulated for common geometries so that they need not be com-

puted each time they are Used. A list of referdnces for available con-

figuration factors is given in table I of appendix A.

Two geometries possessing closed-form configuration factors are

given in the next examples which also serve to illustrate the method of

obtaining these factors.

EXAMPLlg 2--6: An elemental area dAt is oriented perpendicular to

a circular disk of finite area A2 and outer radius r as shown in figure
2-7(a). Find an equation describing the configuration factor Fdt-z for

this system in terms of the appropriate parameters h, l, and r.
The first step in this problem is to find expressions for the quantities

inside the integral of equation (2-13) in terms of known quantities so

that the integration can be carried out. The elemental area dA2 is known
in terms of the local radius on the disk and the angle 0 as

dA2 = p dpdO

Because the integral in equation (2-13) must be carried out over all

p and 0, the other quantities in the integral must be put in terms of
these two variables; this is done by using auxiliary constructions.

Figure 2-7(b) is drawn to evaluate cos/it and cos/3z, which are seen to be

and

l+p cos 0
cos B, = S

Figure 2-7(c) allows evaluation of the remaining unknown, S, as

SZ=hZ+ t_
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where /_ can be evaluated by using the geometric law of cosines on
triangle aOb. This gives

B_=l=+pZ-2lp cos (180-O)=[Z+pZ+2lp cos 0

Substituting these relations into equation (2-13) results in

F_I_____fA cosflt cosfl2 dA.,=L h(l+p cos O) pdpdO, 7rSz , _rS4

h r 2_

(h2+ l_+ p2+ 2pl cos 0) 2

This integration is carried out using the symmetry of the configuration
and is nondimensionalized to give, after considerable manipulation,

2hfJp,. _" p(l+pcosO) dOdpFdl-2_-"_ o -o (h2+p2+12+ 2pl cos 0) 2

__2//('¢ ( ¢:(1 +(cos 0) dOd_
¢r J_.o Js-o (H'Z+_+l +2_ cos 0)2

H{ H2+R2+l -1}[(H,+ R,+

The nondimensionalization has been done by dividing numerator and

denominator by P and by letting H= h/l, R = r/l, and (=p/l. To find
the net exchange of energy between two surfaces in the configuration

of figure 2-7, Fnl-_ is evaluated by the previous expression, and dQda _.,

is evaluated by using equation (2-21 a).

EXAMPLE 2-7: An infinitely long two-dimensional wedge cavity has

an opening angle or. Derive an expression for the configuration factor
from one wall of the wedge to a strip element of width dx on the other

wall at a distance x from the wedge vertex as shown in figure 2-8(a).

(Such configurations approximate the geometries of long fins and ribs
used in space radiators.)

From example problem 2--4, the configuration factor between two
infinitely long strip elements having parallel generating lines is

dFax-d¢ = ½d( sin (p)

where _ is in a plane containing the normals of both strips. Note that
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'!

I x A8___
(b)

(a) Wedge cavity geometry.

(b) Auxiliary construction to determine sin _'

FIGURE 2--8.-Configuration factor between one wall and strip on other wall of infinitely

long wedge cavity.

¢ is measured clockwise from the normal of dx; equation (2-14) then

gives

r_=-,-f' odr_=-_= f:i_.,=½d'=in_)+/[' ½d_isin_)

.=n'l"= 2 +_ ,'-o

The function sin _' can be found by the auxiliary construction of figure
2-8(b) to be
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, B I cos a--x
sin

='C= (x2+F-2xl cos a) x/2

F__t 1+2 lcosa-x2(_ + l: --2xl cos a) _/_

However, the problem statement asked for dF_-cr. Using the reciprocal
relation of equation (2-19) gives

cos o_"

2(x2 +/2 _ 2xl cos a) 1/

By letting X ffixll, this can be placed in dimensionless form

[ cos a--X ]dFl-dx-_ dX _ 4 2(X2 + l -- 2X cos or) l/z

The only variables are the opening angle of the wedge and the dimen-

sionless position from the vertex.

2.4.3 Configuration Factor for Two Finite Areas

Consider the configuration factor for radiation emitted from an

isothermal surface ell shown in figure 2-9 and reaching elz. By defini-
tion, Fi-z is the fraction of the energy leaving elt that arrives at elz. The

total energy leaving the black surface A_ is o'T_A_ since eli is isothermal

at Tz. The radiation leaving an element dd_ that reaches dA: was given
previously by

cos _ cos 3_ d3_d3_

If this is integrated over both el_ and A2, then the result will be the energy
leaving el_ that reaches Az. The configuration factor is then found as

F1-2

f_l £o'Tt cos 3, cos/3, dA2dA,
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T2

Normal to dA2_21t _)l _

27

NormaltodAl-_

rA1

T1

FIGURE2--9. -- Geometry for energy exchange between finite areas.

Fl-2-_-_t 1 fA fA COS _t COS f12 d_d'_l1 2 7rS2 (2-22)

This can be written in terms of the configuration factors involving

differential areas as

lf (2-23)1 dF___d,4, _- i

In a similar manner to the derivation of equation (2-22), the configuration

factor from .42 to At is found to be

c°sfl'c°sfl'd ,d , (2-24)
1 2 "JTS 2

2.4.3.1 Reciprocity/or configuration/actor between finite areas.-The

double integrals in equations (2-22) and (2-24) are identical. Hence,

the reciprocity relation results

323--0030-69w3
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A_FI_2 = A.,F2-, (2-25)

Further interrelationsbetween configuration factors can be found

by using equation (2-23) in conjunction with the reciprocityrelations

ofequations (2-25) and (2-19),thatis,

A, (A1) l f fAT, ,
f

dFz-dIA2 _-Ja_dFz-el

(2-26)

2.4.3.2 Radiation exchange between finite areas.-The energy radiated

from .41 that reaches ,42 is from the definition of the configuration factor

Q,-2 =" crT_A iFi-2

Similarly, that radiated from A2 which reaches A! is

Q2-, = _r_,_,

The net exchange from Az to At is

Q_ =2-'= Q,-z - Q2-1= o'T|AIFI-z-o'T_AzF2-1 (2-27)

By use of equation (2-25) this can be written in the two forms

Ql=z=o'(T_ - T_)AIFI-z (2-28a)

Q l = 2= or(T| -- T| ) A_F.,__ (2-28b)

EXAMPLE 2-8: Two isothermal plates of the same finite width and of

infinite length are joined along one edge at angle ot as shown in figure 2-8.

Using the same nondimensional parameters as in example 2-7, derive

the configuration factor between the plates.

Example 2-7 gives the configuration factor between one plate and

an infinite strip on the other plate as

1 cosa- 7
dFi-_-- +2(xZ+/Z-2xl cos a) _/_ dx

Substituting into equation (2-26) gives
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l" COS ry _ 7

F_'-- o dFt-_= +2(x2+_'---_-'_cos c_)u dx

where, for convenience in labeling, the width of the side in figure 2-8

having element dx is specified as l*. Using the dimensionless variable
X= x/l and the fact that/*= l, this becomes

F_q- -- 4 2(X2 + 1-2X cos a) _/2' dX

Carrying out the integration yields

Fl_. 1 /\(1--c°scz') t/z
Q

= -- \ / = 1 - sin2

For the present case where the two plate widths are equal, the only

parameter is the angle a. Also, because the areas of the two sides are
equal, the reciprocity relation (eq. (2-25)) gives, as expected from

symmetry,

FI--/.---- F:'-q

TJmLE 2-I.--$UM_L_RY OF CON_GUnATION FACTOR AND ENERGY EXCaANGE RgLA_ONS

Geometry

Elemental

area, to

elemental

area

Elemental

ltrea tO

finite area

Finite area

to finite

area

Energy exchange Configuration factor

dFdt _wl

_g COS _1 COS _ d,42

_rSs

ffif, cos/3,co_/3,_,
t "ffS2

Fl-g

cos_, cos_ oH,_,_-S2

Reciprocity

AIF,-_ _ffiA2F2-,
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2.4.4 Summary of Configuration Factor and Energy Exchange Relations

In table 2-I, there are summarized the energy exchange equations,

integral definitions of the configuration factors, and the configuration

factor reciprocity relations.

2.5,METHODS FOR EVALUATING CONFIGURATION FACTORS

2.5.1 Configuration Factor Algebra for Pairs of Surfaces

Because of the difficulty involved in directly computing configuration

factors from the integral definitions in table 2-I for many geometries,
it is desirable to utilize shortcut methods whenever possible. Such short-

cuts can be obtained by using two concepts that have been developed in

preceding sections: (1) the definition of configuration factor in terms of
fractional intercepted energy and (2) the reciprocal relations. This section

will show how these two concepts can be used to derive configuration

factors for certain geometries from known configuration factors of other
geometries. The interrelation between configuration factors is termed

"configuration-factor algebra."
Consider an arbitrary isothermal black area A1 in figure 2-10 ex-

LAl

FI-3

• A3 + A4

FIGURE 2-10.-Energy exchange between finite areas with one area subdivided.
Fl-_ + FI-4 = FL-_.
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changing energy with a second area A2. The configuration factor FI-2
is the fraction of the total energy emitted by A1 that is incident upon

Az. If Az is divided into two parts, Aa and A4, the fraction of the total

energy leaving At that is incident on Aa and the fraction incident on A4
must total to Ft-2. As a consequence, the following can be written:

F, _z = F_-(3+4) = F_-3 + F1-4 (2-29)

Suppose then that Ft-z and F_-4 are known, but configuration factor

Fa_, is desired. Then

F, -3 = F, _z - F1-4 (2-30)

By using the reciprocity relation (eq. (2-25)),

"_3 AIFa-I = FI-_=_3(FI-2-FI-4) (2-31)

This is a powerful tool for obtaining new configuration factors from those

previously computed. This method will be further examined by use of

some examples.

EXAMPLE 2--9: An elemental area d,41 is oriented perpendicular to a

t/

h A2 (entire diskr-
of radius ro)

A3 (inner disk rott I /--r i

- 2--'14 [ _

FIGURE 2-11.-Interchange between elemental area and finite ring.
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ring of outer radius ro and inner radius ri as shown in figure 2-11. De-

rive an expression for the configuration factor Fdl-_.g.

From example 2--6, the configuration factor between element dAl

and the entire disk of area Az and outer radius ro was found to be

F_I-z = [(H2+ R2o+1)2_4R_o]v2--1

where tt=h/l and Ro=ro/l. The configuration factor to the inner disk

of area As and radius rt is similarly

F H f Hz+RI+I
41_3---_-_[(Hf+R_+ l)2_aR;11/, 1 }

where Rl----ri/l. Using configuration-factor algebra, the desired con-

figuration factor from d.41 to the ring Az--A3 is

H_+R_+ 1F_ - r_,o-- F_t - 2 - Fa1-2 = H [ (H 2+ R _o+ 1 ) 2_ 4R g] 112

_ H'+R_+I

EXAMPLE 2--10: Suppose that the configuration factor is known

between two parallel disks of arbitrary size whose centers lie on the

same axis. From this, derive the configuration factor between the two

rings A2 and A3 of figure 2-12. Give the answer in terms of known
disk-to-disk factors from disk areas on the lower surface to disk areas

on the upper surface.

The factor desired is F-,-3. From configuration factor algebra, F-_-3

is equal to

F2-3-- F2-(3+4}-- F2-4

The factor F2-(3 +4) can be found from the reciprocal relation

dzF2-(3+4) -- (Aa + d4)F(s+4)-z

Applying configuration algebra to the right-hand side results in

A2F2-(3+4) -'= (,43 -{- A4) [F(3+4)-(|+2)- F(3+4)-1]

= (A3 + A4)F(3 +4)-¢1 +2) - (A3 + A4)F(3+4)- !
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Fl6Ultg 2-12.-Interchange between parallel ring areas having common axis.

Applying reciprocity to the right side gives

A._2-(3+4)----(At+ A_)F(__-2)-(_+4)-AIF_-(3+4)

where the F factorson the rightaxe both disk-to-diskfactt)rsfrom the

lower surfacetothe upper.

Now the factorF2-4 remains to be determined.Again, apply the

reciprocalrelationsand configurationfactoralgebratofind

F2-4-- F4-2 =_-_2 [F4-<,÷2_-F4-,]

1
= A-;[(A, + A,)F_,÷,__,- A,F__4]

Substituting the relations for F2-4 and F._-(3÷4_in the first equation gives

A1
A,+A2 ['F(,+2)-_a÷4)--F(,+_)-4] --A-'22 [Ft-<_+4_--F,-.,]F_-3= A----_
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and all configuration factors on the right-hand side of this equation are
for exchange between two disks in the direction from disks on the lower
surface to disks on the upper surface. The problem is now solved.

Because of the small differences of large numbers that can occur

when obtaining an F factor by use of configuration-factor algebra (as

might occur on the right side of the last equatio, of the preceding

example), care must be taken

figures are retained to ensure
gives one example in which an

causes an error of 57 percent
means of angle-factor algebra.

EXAMPLE 2-11: The internal

that a sumcient number of significant

acceptable accuracy. Feingold (ref. 2)
error of 0.05 percent in a known factor
in another factor computed from it by

surface of a hollow circular cylinder of

radius R is radiating to a disk At of radius r as shown in figure 2-13.

Express the configuration factor from the cylindrical side A3 to the disk
in terms of disk-to-disk factors for the case of r less than R.

From any position on A_ the solid angle subtended when viewing

4-

A4

/
/ /

FIGURE 2-13.-Internal surface of cylindrical cavity radiating to circular disk//R

for r<R.
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z/3 is the difference between the solid angle when viewing*/2, d_, and
that viewing A4, dtm. This gives the F factor from an area element dA_

on At to area Aa as Fa1_a=Fa__2-Fat_4. By integrating over At and
using equation (2-23), this can be written for the entire area At

F,-3= Ft-., -Ft-4

The factors on the fight are between parallel disks. The final result for
F from the cylindrical side Aa to the disk A1 is

F3- l = _ (F! -2 -- F1-4)

There is a reciprocity relation that can be derived from the symmetry

of a geometry. Consider the opposing areas in figure 2-14{a). From the
symmetry it is evident that Az=A4 and Fz_3=F4_t, so that
A2F2_s=/I+F4-,. From reciprocity A+F4-t=AIFt-4. Hence, there is
the derived relation

3c" /r/ i

I A II I
i .J _Z \_" ..'
t /_, ...._i /
I A I f

I t
I I
k/

(b)

' _,_. _4" i I t

I w r-r_._l , i
s If I, -P_',_..I I

' "#" I i

(a) Two pairs of opposing rectangles. AF,-4=Aj:=__.

(b) Four pairs of opposing rectangles..4tF2-_==A_C'__e.

FICUllE 2-]4.-Geometry for reciprocity between opposing rectangles.
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A.,F.____ AIFi-4

which relatesthe diagonaldirectionsshown by the arrowson thefigure.

Similarly,the symmetry offigure2-14(b)yields

A2F._-7 : A_F_-s

Figure 2-15(a) shows four areas on two perpendicularrectangles

having a common edge. Since allof theseareas are of unequal size,

thereisno apparentsymmetry relation.However, itwillbe shown that

therelationisvalidthat

J
(a)

I"-'-c "t" d

]

(b}

(c)

(a) Representation of reciprocity, AIFI-2=A_F'_-q.

(h) Construction for Fx-I.

(c) Construction for Fs-4.

FIGURE 2-15. --Reciprocity for diagonally opposite pairs of rectangles on _wo perpendicular

planes having common edge.
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.4,F1-2= A3Fa-4
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(2-32)

To prove this, begin with the basic definition (eq. (2-22)); thus

lfA fA cos/3_cos_.4,F,-:=_. , , S_ d.A2d_,

From figure 2-15(b), S 2={x2-x,) 2+y_+z_, cos fl,=zdS, and

cos _ = ydS. Then

,f f: r- f, ,z,AIFt-_=_r ,.o ,.o J=,-c ,.o [(xz--xl)2+Y_+Z_] _dx'dy'dx_dz"

(2-33a)

Similarly, referring to figure 2-15(c) reveals that

=_rj,;.o ,.o ,.o. ,.o [{x3- x,): + y_
(2-33b)

By interchanging the dummy integration variablesx_, y_, x2, and z.- for
x4, y3, xa, and z4, it is found that the integrals in equations (2-33a) and

(2-33b) are identical, thus proving equation (2-32).

EXAMPLE 2-12: If the configuration factor is known for two perpendic-

ular rectangles with a common edge as shown in figure 2-16(a), derive

the configuration factor Ft-8 for figure 2-16(b).

First, consider the geometry in figure 2-16(c) and derive the factor
F7-6 as follows:

A_ .+ As
F(s+s)-(7+s)=Fcs+s)-_+F(s+6)-s=_FT-<s+6) As+AsFs-{s÷s}

A7 As
F(s+s)-(7+s)= "T":-7" (FT-s+ F_-s)+ _ (Fs-s+ Fs-6)

/_$ 7- ,_6 /15 7-/'t 6

Substitute A¢FT-s for AsFs-s and solve the resulting relation for FT-s
to obtain

1
F7-6 = _ [(/Is+ A6)F(,+6)-(7+s)-- dTF_-s - dsFs-6]
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(a)

A2" I

 A,J
(bl

I

(0

(a) Perpendicular rectangles with one common edge.

(b) Geometry for Fi..4.

(el Auxiliary geometry.

FIGURE 2--16. --Orientation of areas for example 2-12.

Returning now to figure 2-16(b)

Fl -e = A_ F6- t
//6 A¢

= A_to_(, +_)-/t_ t"-_-

The factors Fs-(,÷3) and Fo-3 are of the same type as F:-6 so that Ft_s
can finally be written as

A_{ 1F,_,= _ _ [(A,+A, +_+.4,)F(,+_+_+,)_(.,.._>

1 + 1
- A_._(2+,)-A.,2"__(,+3)]- _ [(A3A_)F(3+_)-(5+0)-AcFs_,-A___]t
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All of the F factors on the right side are for two rectangles having one

common edge as in figure 2-16(a).

When formulating relations between configuration factors, it is some-

times useful to think in terms of energy quantities rather than fractions
of energy leaving a surface that reach another surface. For example, in
figure 2-10 the energy leaving .42 that arrives at A, is proportional to

AzF2-_ and is equivalent to the sums of the energies from A3 and A4
that arrive at A,. Thus

(As+ A4)F(3+,_- 1= A_3-_ + A_'__, (2-34)

This can also be proved by using reciprocity laws as follows:

(A3+ d4)F<s+4}- 1-- A,F, -<3+4_= A,F,_3 + A,F, -4 = A3Fa-, + A4F4-1

2.5.2 Configuration Factors in Enclosures

To this point, only the radiation exchange between two black iso-

thermal isolated surfaces has been considered, although subdivision
of one or both of the surfaces into smaller portions has been examined.

Consider the very useful class of problems in which the configuration
factors are between black surfaces that form a complete enclosure.

These configuration factors will later have a wider utility when nonblack
diffuse enclosures are analyzed.

For an enclosure of N surfaces, such as shown in figure 2-17 (where
Nffi8 as an example), the entire energy leaving any surface inside the

enclosure, for example surface A_, must be incident on all the surfaces

making up the enclosure. Thus all the fractions of energy leaving one

FIGURE 2-17.--Isothermalenclosurecomposed ofblacksurfaces.
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surface and reaching the surfaces of the enclosure must total to unity;
that is,

N

FJ:-t + Fk-2 + Fk-3 + " • ""b Fk-_'t" " • • +Fk-,v= _ Fk-j: 1

J- _ (2-35)

The factor Fk-_ is included because when .4k is concave, it will intercept

a portion of its own emitted energy.

EXAMPLE 2--13: Two black isothermal concentric spheres are ex-

changing energy. Find all the configuration factors for this geometry if
the surface area of the inner sphere is AI and the area of the outer

sphere is .4_.
All energy leaving A1 is incident upon A2, so the following is known

immediately:

El-2 _ 1

Using the reciprocal relation reveals further that

Fz - 1ffiA IFI -..._..._-- ,4_.!
A2 Az

Also, from equation (2-35),

or

F2-1 + Fz-_-'- 1

Fz-2-- 1 -F2-1 --
_2 _1

A2

EXAMPLE 2-14: An isothermal cavity of internal area .41 has a plane

opening of area Az. Derive an expression for the configuration factor of
the internal surface of the cavity to itself.

Assume that a black plane surface Az replaces the cavity opening.

Then F2-1 = 1 and

FI_2 A2F2_, =/12
AI Al

Since AI and A2 form an enclosure,
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(,41 -,42)
F1_1--.--1-Fl_2ffi

.4,

which is the desired F factor.

EXAMPLE 2-15: An enclosure of triangular cross section is made up

of three plane plates each of finite width and infinite length (thus form-

ing an infinitely long triangular prism). Derive an expression for the
configuration factor between any two of the plates in terms of the plate
widths, LI, L_, and Ls.

For plate 1, FI-2 + Ft_a = 1. Using similar relations for each plate and

multiplying through by the respective plate areas result in

and

A_FI-2 + AIFl-s = `41

A_2-1 + AzF2-3 : A2

`4_F__ i + A_F3-2 : As

By applying the reciprocal relations to some of the terms, these three

equations become

`41FI-2 + AIF1-3 = AI

`41FI-2 + A2F2-3 = A2

and

AIF1-3 + A'zF2-3 = A_

thus giving three equations for the three unknown F factors. Subtracting
the third from the second and adding the first give

Al +A2 --A3 = L, + L_ - L3
F1-2

2Ai 2LI

For the special case of L_ffi/._, this should reduce to the factor be-

tween infinitely long adjoint plates of equal width separated by an

angle a as given in example 2-8. For Lt = L_,
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L3

FI 2 2LI-L3 '2 a
_ =--_-_l = I -- _-'_'i= I -- sin-_

which agrees with example 2-8.

The set of three simultaneous equations from which the final result
was derived in example 2-15 will now be examined more closely. The

first equation involves two unknowns', Ft_2 and Ft-2; the second equation
has one additional unknown, F2-3; and the final equation has no addi-

tional unknowns. Generalizing the procedure for a three surface en-

closure to any N-sided enclosure made up of plane or convex surfaces
shows that of N simultaneous equations, the first would involve N--1
unknowns, the second N-2 unknowns, and so forth. The total number
of unknowns U is then

N

U=(N-1)+(N-2)+(N-3)+. • .+I=N_--_j t2-36)
j=l

Thus, for a four-sided enclosure made up of planar or convex surfaces
4

of known area, four equations relating (4)2- _j or six unknown con-
j-t

figuration factors can be written. Specifying any two of these factors

allows calculation of the rest by solving the set of four simultaneous
equations.

If all the surfaces can see themselves, then the factor F_-k must be

included in each of the equations. Analyzing this situation, as previously

done, shows that an N-sided enclosure allows writing N equations in
N--I

N_--_ j unknowns. For a four-sided enclosure, four equations in-

volving 10 unknown F factors could be written. The specification of

six factors would be required, and then the simultaneous relations
could be solved to determine the remaining four factors.

2.5.3 Mathematical Techniques for the Evaluation of Configuration
Factors

As shown by the summary of relations in table 2-I, the evaluation of

the configuration factors F_1-2 and Ft-_ requires integration over the
finite areas involved. There are a number of mathematical methods

that are useful in evaluating certain configuration factors when the

straightforward analytical integration methods become too cumber-

some. These methods can encompass all techniques that are used in
the evaluation of integrals, including numerical approaches.
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A few methods that are especiaLly valuable in dealing with configura-
tion factors will be discussed here.

2.5.3.1 Hottel's crossed-string raethod.-Consider the class of con-

figurations, such as long grooves, in which all surfaces are assumed to

extend infinitely far along one coordinate. Such surfaces can be ge n-
eratcd by moving a straight line through space in such a way that it
always remains parallel to its original position.

A typical configuration of this type is shown in cross section in figure

2-18. Suppose that the configuration factor is needed between At and

//2 when some blockage of radiant transfer occurs because of the pres-
ence of other surfaces A3 and A_. To obtain F_-2, first consider that

At may be concave. In this case draw the dashed line agf across A1.

Then draw in the dotted lines ad and abc to complete the enclosure

abcfKa which has three sides that are either convex or planar. The
relation found in example 2-15 for enclosures of this type can be
written as

A@IF.gi_abc_ - A._[+ A_- Aq"2 (2-37)

For the three-sided enclosure adefga, similar reasoning gives

......•::_z:;_:_,!."_i;_._ f

Ji/ \,,!

FIcuag 2-18.-Houel's crossed-string method for configuration factor determination.

323-003 0-69---4
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A - A_gf+Aaef--A_
aof_ ao$-def_ 2 (2-38)

Further, note that

Fagf-abe + Fagf-z + Fagf-def "_"1 (2-39)

Substituting equations (2-37) and (2--38) into equation (2-39) results in

A.oyFffigy-z = Aagy (1 -- F.uy-_e -- F.gy-def)

= Aef+Aad-Aavc-A_ef
2 (2-4O)

Now Fz-ag/ffiF,_, since zlagj, and At subtend the same solid angle when

viewed from .4z. Then with the additional use of reciprocity, the left

side of equation (2---40) can be written as

A.gIFa.l-,ffiA,F,_a.I=A_F2-, = A ,Fx-, (2-41)

Substituting equation (2-41) into equation (2-40) results in

A,F,-, AeI4"Aad--Aabe--Ade[
---- ' 2 (2-42)

If the dashed lines in figure 2-18 are imagined as being lengths of
strings stretched tightly between the outer edges of the surfaces, then
the term on the right of equation (2-42) is interpreted as one-half of

the total quantity formed by the sum of the lengths of the crossed strings
connecting the outer edges of dl and As minus the sum of the len_hs

of the uncrossed strings. This is a convenient way of determining

configuration factors in this type of two-dimensional geometry and was
first pointed out by Hottel (ref. 3).

EXAMPLE 2-16: Two infinitely long semicylinders of radius R are

separated by a minimum distance D as shown in figure 2-19. Derive
the configuration factor F,-2 for this case.

The length of crossed string abcde will be denoted as LI, and of
uncrossed string ef as L,. From the symmetry of the problem, equation

(2-42) may be written

F,_, = 2/,, -2L,= Lz -Lz
2,4, erR
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FIG_,I_ 2-19.-Configuration factor between infinitely long semicylinders by crossed-

string method.

The length _ is given by

L_= D + 2R

The length of L, is twice the length cde. The segment of LI from c to d

is found from right triangle Ocd to be

and the segment of L_ from d to e is

Li, d-_ = RO

From triangle Ocd, the angle 0 is given by
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Combining the known relations results in

F,_2 - L, -/-_= 2 (Lt. c-_ + L,. d-t) - Lz
erR _'R

[4D (D + R)]'/_+ 2R sin-I (DR_-D-2R

_-R

Letting X = 1 + (D/2R) gives

F,-2 =-_.2 [(X2-1)_/2 + sin-I (_)-X] (2-43)

This can also be put in the form

F,_,=2 [(X'-- I ) t`' (2-44)

which agrees with the result in reference 5.
2.5.3.2 Contour integration.-Another tool that is useful in the evalua-

tion of configuration factors is the application of Stokes' theorem for
reduction of the multiple integration over a surface area to a single

integration around the boundary of the area. This method is treated at

some length by Moon (ref. 4), Sparrow and Cess (ref. 5), and Sparrow
(ref. 6). Consider a surface area A as shown in figure 2-20 with its bound-

ary designated as C (where C is piecewise continuous). The location of

an arbitrary point on the area is at coordinate position x, y, z. At this
point the normal to A is constructed and the angles between this normal

and the x-, y-, and z-axes are designated as a, y, and $. Let the functions
P, Q, and R be any twice differentiable functions of x, y, and z. Stokes'
theorem in three dimensions provides the following relation between

an integral of P, Q, and R around the boundary C of the area and an

integral over the surface A of the area:

_c (P dx+Q dy+ R dz)

cos 8] dA

(2-45)
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FIGUIIE 2-20.--Geometry for quantities used in Stokes' theorem.

Now this relation will be applied to express area integrals in configura-

tion factor computations in terms of integrals around the boundaries

of the areas.
2.5.3.2.1 Configuration factor between a differential and a finite area:

The integrand in the configuration factor Fdl-= is

cos/+, cos/3, _,
_S m

as shown in table 2-I. In general, for the two cosines the following can

be written (fig. 2-21):

cos _St=(_ -'_ ) co+o,+/,_)

co+o,+/_/

co+_,+C_)

co+_,+C_)

cos 81

(2-45)

cos 5_

(2-47)

This follows from the relation that, for two vectors _ and V2 having
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x to dA
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Z

Normal to

dA_,. X dA2
/'-(x2, Y2,Z2)

LdA 1

/" IXl. Yl, Zl)

FzG_gg 2-21.--Geometry for contour integration.

direction cosines (/,, ml, nl) and (/=, m_, n:), the cosine of the angle

between the vectors is given by l_[:+ mtm2+ntn_.

Substituting equations (2-46) and (2-47) into the integral relation for
a configuration factor between a differential element and a finite area

gives

F_,-_=_"cos/3,cos_ _
JA, _rS =

=if [(x,-x_) cos _,,+(,y,-y,) cos 7,+(z,-z,) cos 8,1
JA= S 4

× [(xx-x2) cos ,_=+(y,-y_) cos 3,2+(z,-z_) cos _z] d.,42 (2-48)

Now let

[_COS (X }
tn _ COS "y (2-49a)
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f__ (xz --x,)lt + (y2 -- yl)mt + (zz --zl )nt
ors 4

Equation (2-48) can then be written in the abbreviated form

49"

(2-49b)

Fat-, _- fa [ (xt-xz)fl, + (yt-yz)fm2+ (zt-zz)fn2]d.4z
II

(2-50)

Comparison of equation (2-50) with the fight side of equation (2-45)
shows that Stokes' theorem can he applied if

and

OR 8Q = (x,-x_)f (2-51a)
8y2 Ozz

OP OR
= (Yt--yz)f (2-51b)

8zz 8x_

aQ oP
= (zl--z2)f (2-51c)

8x2 8yz

Sparrow indicates (ref. 6) that useful solutions to these three equations
are of the form

--mt(zz --zt) + n,(y2--y,)
P = 2¢rS2 (2-52a)

Q =/, (zz - z, ) - n, (x2 - x,)2¢rS2 (2-52b)

R =--l,(y2--y,) +mt (xz--x,)
2¢rS2 (2-52c)

Equation (2-45) is used to express Fat-z in equation (2-50) as a contour

integral; that is,

__ (P dx2 + Q dyz + R dzz) (2-53a)Fttl-z
I

Then P, Q, and R are substituted from equations (2-52), and the result
is rearranged to obtain
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l! •f

F _t-2 = _ Jcq),
(z_ - z,) dy_ - (y_ - y! )dz_

S _

+_-._ _c (X'-x')dz_ (z'-z')dx'

n, f. (y.,-y!)dx2- (x2-x,)dy.,.
+2¢rW_c, ' S 2 (2-53b)

The double integration over area A., has been replaced by a set of three

line integrals for determination of Fdt-z. Sparrow (ref. 6) discusses the
superposition properties of equation (2-50) that allow addition of the

configuration factors of elements alined parallel to the x-, y-, and z-axes

to obtain the factors for arbitrary orientation.

I t Normal
to A2, n2I

I
I
I

/

\ I
\

\1

I
I
I
I
I

/
/

FIC, UI_ 2-22.-Configuration factor between plane area element and right triangle in

parallel plane.
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EXAMPLE 2--17: Determine the configuration factor Fat-2 from an ele-

ment d.At to a fight triangle as shown in figure 2-22.

The normal to dA, is perpendicular to both the x- and y-axes and is

thus parallel to z. The direction cosines for dAt are then

cos at = It = 0

COS yt=mt=O

and

cos 8_ = n_= 1

and equation (2-53b) becomes

Fat_z:2"l _c, (_2-yOdx2-(x2-xt)dy_S_

Since dAt is situated at the origin of the coordinate system, xt=yt=0

and F_t-2 further reduces to

Fat_2: ___ _c y2dx2--x2dy2
z $2

The distance S between dAt and any point (x2, y2, z2) on As is

S2=x_+_+z_=x_+_+d _

The contour integration of the configuration factor equation must now
be carried out around the three sides of the right triangle. To keep the

sign of F,_t-z positive, the integration is performed by traveling around

the boundary lines I, II, and III in a particular direction. The correct

direction is that of a person walking around the boundary with his head
in the direction of the normal n_ and always keeping Az to his left. Along

boundary line I, xz=0, dx2=0, and O<_yz <_ a. On boundary II, yz=a,

dy.., = O, 0 <_ x._ _ b. On boundary III, the integration is from _ = 0 to c

where _: is a coordinate along the hypotenuse of the triangle so that

X2 ---- (c-- _) sin 0

y2 = (c- _) cos0
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and

dxz =- sin 0 d_

=- cos 0

Substituting these quantities into the integral for Fd,-_ gives

= _ y2 dx2 - x:_dy.,21rFdl Yc, S 2

,_ y2 dx2 - xz dyz

.a.m xzZ+Y_ +d2

fz _ a dx22_rF,,,__.= 0 +
,-o x_ + a 2+ d:

+re --(c--_) cos 0 sin 0 d_+(c--_) sin 0 cos 0 d_:
J,-o (c--_) z sin: O+ (c--_) z cosZ O+d z

or

fo b _ _2
2¢rFdl-z =

x_ + a2+ tP

Use of the integral tables gives

a

Fd,-2 = 2¢r(a 2+ d z) ,/2 b ,/.]tan-' ['(a:+ d:)

or, in dimensionless variables,

X

Fd,-z = 27r( 1 +X 2) ,/z
[ XtanO ]

tan-' L(i

where X = a/d and tan 0 = b/a.

2.5.3.2.2 Configuration factor between finite areas: For configuration
factors between two finite areas, substitute equation (2-53b) into equa-

tion (2-23) which gives
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A_FI-2= A.,F2-1= fA,Fd1-2d.41

=2-'-_ , , S 2 dAl dx_

(2-54)

where the integrals have been rearranged and the dx2, dy2, and dzz
factored out since these are independent of the area integration over d_.

Stokes' theorem in applied in turn to each of the three area integrals.

Consider the first of the integrals

fA, (y2--yi)nl- (zz--zt)ml$2 dAi

and compare it with the area integral in Stokes' theorem equation (2-45).

This gives

aP aR -(z_-zJ
azt ax_ S 2

aQ aP=(yz--yt_.__._)
Oxl 8yl S2

A solution to this set of partial differential equations (ref. 6) is P= In S,

Q=O, and R=0; and the area integral becomes, by use of equation
(2-45) to convert it into a surface integral,

fA, - yon, - - z,)m,SZ dAt---_c ' InS dxl

By applying Stokes' theorem in a similar fashion to the other two in-
tegrals in equation (2-54), it can be written as



54 THERMAL RADIATION HEAT TRANSFER

or, more compactly,

F___=2-_ _c, _c (lnS dx2dx_ + lnS dy2dyl + lnS dz2dzl ) (2-55)

Thus the integrations over two areas which would involve integrating

over four variables have been replaced by integrations over the two sur-

face boundaries. This allows considerable computational savings when

numerical evaluations must be carried out, and can sometimes result in

analytical integration being possible where it could not be carried out

for the quadruple integral over the areas.

EXAMPLE 2--18: Using the contour integration method, formulate the

configuration factor for parallel rectangles as shown in figure 2-23.

Note that on both surfaces dz will be zero. First, integrate equation

(2-55) around the boundary C2. The value of S to be used in equation

(2-55) is measured from an arbitrary point (xt, yl, 0) on A1 to a point on

the portion of the boundary C2 being considered. This gives

[-- b -[

a/g. rl

(x2,Y2,c) A_ 2

z "_ n2

I y

c

FIGURE 2-23.--Contour integration to determine configuration between two parallel plates.
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1 b
F''=_c, {f2.-0In (x_+(y,--y,)2+cZ]'l" dy:

+ fh.b ln [(a- x,)2 + (y, -y,)_ + c2J'/' dy,} dy, .

+2-_ab _c, { fz].o ln [(x,-x,):+(b-y,)'+cq'/' dx,

f; }+ In [(xz--x_)2+y_+c2]dx2 dx_
,.a

Then, carrying the integration out over Ct gives, in this ease, eight
integrals. The first four, corresponding to the first two integrals of the
previous equation, are written out as

f;f;2_rabF__z = In [a 2+ (y_.-- y, )z + ca] _/_dy2dy_
1_0 .tsO

+ In [(yz--y,)Z+c2]'/z dy.,dy_

f,'f/+ In [(y2--y,)2+c211# ' dy2dy,
t--O i.m_

+ f[,._ f_, ._ ln [aZ+ (Y'z--Yl)2+c2]l/2 dy2dyl

+ (4 integral terms in x)

,, ,, r<,:+u-_-,,_,+<-,,-_:f,,:o£,.oini.. _..,-'Z777,_.l_Y"+,

f,;f., [<x.__.,,,_,+<,=+<-.,],,=._,+ In
_-o z=o ( x_ -- xl ) 2 + c _"

and the configuration factor is now given by the sum of two integrals.

These can be integrated analytically by factoring the quadratic terms and
using the relations governing log functions. This procedure results in a

lengthy algebraic expression which will not be given here.

2.5.3.3 Differentiation of known factors.-A further extension of con-
figuration factor algebra is the generation of configuration factors

between differential elements by differentiating known factors between

finite elements. This technique is very valuable in certain cases, and is
best demonstrated by the use of an example problem.
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EXAMPLE 2-19: As part of the determination of radiative exchange in a
square channel whose temperature varies longitudinally, it is desired to
find the configuration factor dFal-_ between an element rid1 at one

corner of the channel end and a differential length of wall section d_4.,

as shown in figure 2-24(a).
Configuration factor algebra plus differentiation can be used to find

the required factor. Refer to figure 2-24(b). Since the fraction of energy
leaving rid1 that reaches d,42 is the difference between the fractions
reaching the squares Aa and A4, the factor dFai__ is the difference
between F_l-s and F_1-4. Then

- - _rd,--o,_ I
dFd,-_ = re!-3 - ed, --4= - _a._ l_,-"o= - aF_ax -o dx

J

(b)

(a) Configuration factor between dd_ and differential length of channel wall dA:.

(b) Configuration factor between d.4I and squares .4a and A4.

FIGURg 2-24.-Derivation of configuration factor between differential length of square
channel and element at corner of channel end.
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Thus, if the configuration factor Fat-c2 between a corner element and

a square in a parallel plane were known, the derivative of this factor

with respect to the separation distance can be used to give the required
factor.

From example 2-17, the configuration factor between a comer element

and a parallel isosceles right triangle is given by setting tan 0= 1 in the

expression derived for a general right triangle. This yields (for the present

case where the distance d= x)

o [o]Fat-_ = 2w(a: + x2) t/2 tan-t (a 2 42x_) 11:

Inspection shows that, by symmetry, the factor between a comer ele-

ment and a square is twice the factor Fdt-t,,. The required factor dFdl-_
is then

Ox ¢r Ox a2+-xz) t/2 tan-t (a242._') 1i:

.a.(a2+xZp/: tan -t + x2+ 2a _ J(,+,+-x,),,,

where X = x/a.

More generally, start with the configuration factor _n-, for two parallel

areas At and/iz that are cross sections of a cylindrical channel of arbi-

trary cross-sectional shape (fig. 2-25(a)). This factor depends on the

spacing ]x2-xt] between the two areas and includes blockage due to

the channel wall (i.e., it is the factor by which/iz is viewed from/It with

the channel wall present). Note that for simple geometries, such as a

circular tube or rectangular channel, the wall blockage is zero. The

factor between/It and d.4z in figure 2-25(b) is then given by

dF OFi-2 dxa
x-.,_ _ -- _JX'---'2"

(2-56)

as in example 2-19. Equation (2-56) will now be used to obtain dFat-m,

the configuration factor between the two differential area elements in

figure 2-25(c).

By reciprocity

-- A t 0Ft_z
F,,,-t = dA2 ax2 dx2
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Cylindrical channel with arbitrary

cross-sectional shape ..... __

x2

(b)

l¢1

(a) Two _,_ite areas; F,-,.

• OF,-s

(b) Finite to differential m'ea. d_l_,_=-"_--x_ dx2.

AI azFI-2

(c) Two differential areas, dF_l.._= d,,4t axiJx_ d,x_t.

FIGURE 2-25.-Configuration factors for differential areas as derived by differentiation of

factor for finite areas.

Then in a fashion similar to the derivation of equation (2-56)

_Fd2-!

ax_

Substituting F_,-I results in

A! _±F1-2 dx2 dx,
dF,n-dl = - d,42 8xl 8x2 (2-57a)

or after using reciprocity
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At c_2Ft_2dx2 dxl
dFa_-,n = - dAt Ox_ axz
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(2-57b)

Hence, by two differentiations the factor dFat-,n can be found from FI-2

for the cylindrical configuration under consideration.

2.6 COMPILATION OF REFERENCES FOR KNOWN CONFIGURATION

FACTORS

Many configuration factors have been tabulated for specific geometries,

and these tabulations are spread throughout the literature. Rather than

attempt to gather the factors here, a feat that would require a separate

volume of size equal to the present one, another course has been followed.

In table I of appendix A, a list of geometries for which configuration

factors are available and a reference list to aid in finding these factors

are given. This provides a more useful general compilation than gathering

only a limited number of factors here.

2.7 RADIATION EXCHANGE IN A BLACK ENCLOSURE

In the preceding parts of this chapter, the energy exchange between

two separate surfaces or surface elements has been examined, and the

concept of the configuration factor has been introduced. In this section,

these ideas are generalized to consider the energy exchange within an

enclosure composed of black surfaces that are individually isothermal

In practice, the interior wails of a black enclosure, such as a furnace,

may not be isothermal. In such a case, the various nonisothermal sur-

faces are subdivided into smaller portions that can be considered indi-

vidually isothermal. The theory for a black enclosure, which is an ideal

case, will serve as an introduction to less restrictive theory in succeeding

chapters.
Perform a heat balance on a typical surface A_ (fig. 2-26). The energy

supplied to Ak from an external source in order to maintain Ak at Tk is

Qk. The emission from Ak is o'T4_/k. The energy received by Ak from

another surface A# is o'T_A_Fj_k. The heat balance is then

Ok=  r Ak- Z  r AjFj_k
jw I

(2-58)

where the summation includes energy arriving from all surfaces of the

enclosure including Ak if A_ is concave. Equation (2-58) can be written

in some alternate forms. Applying reciprocity to the terms in the summa-

tion results in

323-003 0-69--5
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Qk

Aj

Tj

N

A1

FIGLngg2-26. -Enclosure composed of N black isothermal surfaces (shown in cross section
for simplicity).

N

Qe: o'T_Ak -- _, o'T_AkFk-# (2-59)
j=l

Also, for a complete enclosure, from equation (2-35)

so that

N

Fk-j: 1

N N

Qkf°'TIAk Z Fk-#--_Ak j_ T]Fk-#
j- I ""

N

:O'A_,. 2 (Tl-- T¢lrk-j
j-t

(2-60)

This is in the form of a sum of exchanges between A_ and each surface.

EXAMPLE 2--20: The three-sided black enclosure of example 2-15

has its surfaces maintained at temperatures Tt, T2, and Ta, respectively.

Determine the amount of energy that must be supplied to each surface

per unit time in order to maintain these temperatures-this is also the
net radiative loss from each surface.
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Equation (2-60) is written for each surface as

Q_ =A,F___o-(T_- T_) + AtF__3o'(T_- T_)

Q, ---A,F,__o'(T 4- T_) + A,F2_so'(TI -- T])

Q_= A_F_-,_(TI-- T,_)+ A_F___(TI-- TI)

The configuration factors have been found for this geometry in ex-

ample 2-15. Thus all factors on the right of this set of equations are

known, and the Q values may be computed directly.
A check for a numerical computation is that from overaU energy

conservation, the net Q added to the entire enclosure must be zero in

order to maintain steady-state temperatures. This is also shown by

using reciprocal relations on the set of Q equations to obtain

3

k-I

+ [A,F,_,_,(rl - r_) + A2F.,_3_,(r; - rl) ]

+ [A,F,_.o'(_, - 7",)+ A,F,__(r_- r_)]

_0

EXAMPLE 2--21: The enclosure of example 2-15 has two of its sides

maintained at temperatures 7"1and/'2, respectively. The third side is

an insulated (adiabatic) surface, Qa= 0. Determine QI, Q2, and 7'3.

Again equation (2-60) can be written for each surface as

QI = A,FI_2o'( T_ - T_) + A,Ft_3_r( T_-- TI)

Q.. = A2F2__o'(T4, - T_) + AzF2-no'(T_ -- T_)

O=.¢_F3_,o-(T_--T;) + A,F,_,#( T_-- r_)

The final equation is solved for Ta, the only unknown in that equation.

This T3 is then inserted into the first two equations to give Q, and Qz.

EXAMPLg 2-22: A very long black heated tube AI of length L is en-
closed by a concentric black split cylinder as shown in figure 2-27. The

diameter of the split cylinder is twice that of the heated tube, and
one-half as much energy flux is to be removed from the upper area

A3 of the split cylinder as from the lower area A_. If TI = 3000 ° R and a
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--,. L

(a)

b'-_ F a'

(at Geometry of enclosure.
(b) Auxiliary construction to determine F2-,.

FIGtmZ 2-27. -Radiant energy exchange in split-circtdar cylinder configuration, L _ R,.

heat flux Q1//11= 10s Btu/(hrXsq ft) is supplied to the heated tube, what
are the values of T2, T3, Q._, and Qs? Neglect the effect of the tube ends.

Writing equation (2-60) for each surface gives

Q, = AIF,_2_r( T_ -- T_) + A,F,_3tr( T_ - T_)

Q2 = A.,.F2_,cr( T_ - T_ ) + ,4_F2_3Gr(T4 - T4)

Q3=A_'__,o'fT_ - T_) +,,l_.,_2tr( T_ - T4)

From the geometry
/ll ,41 ¢rDIL

,43 ,42 1
_'rD2L
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since D2 -- 2Dl. From an energy balance

Q, + Q2+ Q3 = O

and, since AI=-A2 =A3,

Ql + q2 + Qa= 0 .
"Z, ZA3

From the statement of the problem,

q_2= 1 Q_
A3 2 A:

and this yields

Q_.22=_ 2 Q__2=_0.667 x 10_ Btu/(hrXsq ft)
/12 3 At

-Q2-=-1 Q--2t=- 0.333 × 105 Btu/(hrXsq ft)
As 3 At
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and

Fz-I ffiF3-1 ffiAtF1-3 = 1
A3 2

F2-3 -- Fs-z

To determine F2-a it is known that

F.,-1 + F2-z + F.,-s = 1

Using F_-t = 1/2 gives

o

F2-_ = [- F_-2

In the auxiliary construction of figure 2-27(b)

F2-z = 1 -- F2-_

From the symmetry of the geometry and configuration factor algebra, iris
known that

1
Ft-z f F,-a= _
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The effective area ,4_. has been drawn in to leave unchanged the view of

surface 2 to itself and to simplify the geometry so that the crossed string
method can be used to determine F,-E. The uncrossed strings extending
from a-- a' and b-- b' have zero length. The crossed strings extend from

a--b' and a'-b, and each has the length 2V'3Rt+ (erR,/3). Then, from

section 2.5.3.1 and the fact that A._=/It = 27rR1,

2N/3RI + wR..._._l
3 V_ 1

---_ _.
Fz-_= 2_'R i ¢r 6

It then fo'llows

1 1 1
F.,_3ffi_--F__2=_- (1-Fz-e) ..... ¢r 3 0.218

With this information, the energy exchange equations can now be written

as

(7"

lOS--_2 (30004--T_)+_ (3oo - rl)

-o.667 x 10 = 2 (rl- 3000,)+ 0.218o-(T_-- r_)

o- (T__30004) + 0.218o.(TI_ T_ )--0.333 × 105=_

Adding the second and third equations results in the first, so only two

of the equations are independent. Solving the first and second equations

gives T_= 1890 ° R and Ts = 2400 ° R.

2.8 CONCLUDING REMARKS

In this chapter, methods have been introduced and developed for the

computation of energy exchange between isothermal black surfaces and
in enclosures consisting of individual isothermal black surfaces. The

radiant interchange between individual isothermal black surfaces can
be treated by reasonably straightforward techniques. The chief dif-
ficulties in such problems are not in the concepts involved, but are

rather in the geometrical and algebraic manipulations plus the inte-

grations that must be carried out to determine the configuration factors
for specific geometries. These difficulties are minimized by the avail-

ability in the literature of fairly extensive formulas, graphs, and
tabulations of configuration factors that have already been calculated.
References to the sources of these factors are given in table A-I of

appendix A.
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For practical radiation computations, the assumption of black surfaces
is quite restrictive. Hence, the results given here have Limited direct

application; there may be some instances, such as within certain fur-
naces, where a black computation will yield reasonable results. The

black computation theory, in spite of its limitations, serves two important
functions. First, it is a limiting case with which nonblack performance

and computations can be compared. It provides a good numerics]

check for problems in which a parametric study is being made wherein
the radiation properties are varied over a range of values. The second
function is that the black case provides a foundation for more general

exchange and enclosure theories. In succeeding chapters, the approach

used in this chapter will be adapted and extended for problems that
deal with more complicated effects such as nonblack and nonisothermal

surfaces.
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Chapter 3. Radiation Exchange in an Enclosure

Composed of Diffuse-Gray Surfaces

3.1 INTRODUCTION

3.1.1 Restrictions in the Analysis

In the previous chapter an enclosure composed of black surfaces

was considered. As a next step in building toward more complex treat-

ments that can account for the real property behavior of surfaces, the

surfaces of the enclosure will now be taken as both diffuse and gray.

In chapter 3 of Vol. I, the relations between emissivity and absorp-

tivity are discussed. By definition, when a surface is diffuse-gray, the

directional spectral emissivity and absorptivity do not depend on either

angle or wavelength, but can depend on surface temperature. As a result

of this definition, at any surface temperature TA the hemispherical total

absorptivity and emissivity are equal and depend only on TA; that is,

ot(T,4)-=_(TA). Even though this behavior is approached by only a lim-

ited number of real materials, the diffuse-gray approximation is often

made to simplify greatly the enclosure theory.
Some comment is warranted as to what is meant by the individual

"surfaces" or "areas" that comprise the total enclosure boundary.

Usually, the geometry will tend to divide the enclosure into natural sur-

face areas, such as the individual sides of a rectangular prism enclosure.

In addition, it may be necessary to specify surface areas on the basis of

heating conditions; for example, if one side of an enclosure is partly at

one temperature and partly at a second temperature, the side would be

divided into two separate areas so that this difference in boundary condi-
tion could be accounted for. Hence, the "surfaces" or "areas" dis-

cussed in the radiation analysis are simply each separate portion of the

enclosure boundary for which a heat balance is formed. These portions

are selected on the basis of geometry and imposed heating conditions. A

further consideration is the accuracy of the solution. If too few areas are

designated, the accuracy will be poor; too many areas will require exces-

sive computational time. Thus some engineering judgment is required

in selecting both the shape of the surfaces and their number.

Surfaces of the enclosure can have various thermal boundary condi-

tions imposed upon them. A given surface can be held at a specified tem-

perature, have a specified imposed heat input, or be perfectly insulated

(i.e., specified heat input = 0). It is a restriction in the present analysis

67
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that, whatever conditions are imposed, each separate surface of the en-

closure must be at a uniform temperature. If the imposed heating condi-

tions are such that the temperature would vary markedly over an area,

the area should be subdivided into smaller more nearly isothermal

portions; these portions can be of differential size if necessary. As a

consequence of this isothermal area requirement, the emitted energy

is taken to be uniform over each surface of the enclosure.

Because a gray surface is not a perfect absorber (i.e., its absorp-

tivity is less than unity rather than unity, as for the black case considered

in chapter 2), part of the energy incident on a surface is reflected. With

regard to the reflected energy, two assumptions are made: (1) the re-

flected energy is diffuse, that is, the reflected intensity at each position

on the boundary is uniform for all directions and _2) the reflected energy

is uniform over each surface of the enclosure. If the reflected energy is

expected to vary over an area, the area should be subdivided into smaller

areas over which the reflected energy will not vary too much. With these

restrictions reasonably met, the reflected energy for each surface has the

same diffuse and uniformly distributed character as the emitted energy.

Hence, the reflected and emitted energy can be combined into a single

energy quantity leaving the surface.
When a surface is both diffusely emitting and reflecting, the intensity

of all the energy leaving the surface does not vary with angular direction.

As a result, the geometric configuration factors (E factors) derived for

black surfaces can be used for the present enclosure theory. It is well to

emphasize that the derivation of the F factors in chapter 2 for black sur-

faces was based on the condition of a diffuse uniform intensity leaving the

surface; this diffuse-uniform condition must be true for both _he emitted

and reflected energies in order to use the F factors for a nonblack
surface.

Most of the problems encountered in practice are at steady state.

However, the radiative heat balances considered here are not limited to

steady-state conditions. The radiative balances can be directly applied to

situations where transient temperature changes are occurring. In-

stantaneously, the heat flux q that will be computed in the enclosure

theory that follows can be considered as the net radiative loss from the

location being considered on the enclosure boundary. For example, if a

solid body is cooling by radiation, q provides the boundary condition for

the transient heat conduction solution for the temperature distribution
within the solid.

3.1.2 Summary of Restrictions

The assumptions for the present chapter are now summar/zed. The

enclosure boundary is divided into areas so that over each of these areas

the following restrictions are met:
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(1) The temperature is uniform.

(2) The _, a_, and O_, are independent of wavelength and direction

so that _(Ta)=ct(Ta)= 1-p(T.4) where p is the reflectivity.

(3) All energy is emitted and reflected diffusely.
f4) The incident, and hence reflected energy flux, is uniform over

each individual area.

In some instances an analysis assuming diffuse-gray surfaces cannot
yield good results. For example, if the temperatures of the individual

surfaces of the enclosure differ considerably from each other, then a
surface will be emitting predominantly in the range of wavelengths char-

acteristic of its temperature while receiving energy predominantly in a

different wavelength region. If the spectral emissivity varies with wave-

length, the fact that the incident radiation has a different spectral
distribution than the emitted energy wiU make the gray assumption in-

valid, that is, e(T,O # a(TA). When polished (specular) surfaces are
present, the diffuse reflecting assumption will be invalid, and the direc-
tional paths of the reflected energy must be considered. The treatment

of specular and other more general surfaces are the subjects of chap-
ters 4, 5, and 6.

A

,_'

dA*

akj

a-i

C_
D
F

G

J

j,k
K
L

l

N

O
q
R

7
S

7

3.2 SYMBOLS
area

inverse matrix coefficients, eq. (3-29)
differential element on same surface area as dA

matrix elements defined hy eq. (3-25)
inverse matrix

matrix elements defined by eq. (3-25)
diameter of tube or hole

configuration factor

function in integral eq. (3-57)
auxiliary variational function, eq. (3-58)
indices denoting individual surfaces

kernel of integral equation

length of surface
dimensionless length

minor of matrix element a.j
number of surfaces in enclosure

energy per unit time

energy flux; energy per unit area and time
radius of sphere
direction vector
distance between areas

absolute temperature
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x, y, Z
o

Y

E

_,_

P

O"

coordinates

absorptivity

cone angle; angle from normal of surface

polynomial coefficients, eq. (3,-59)
Kronecker delta

emissivity
dimensionless coordinates

reflectivity

Stefan-Boltzmann constant

dependent variable in integral equation, eq. (3-57)

Subscripts:

A area

a apparent value

black blackbody property

• external radiation entering through opening; environment

i incoming

j, k property of surface j or k

o outgoing

s sphere

_, spectrally (wavelength) dependent

1, 2 surface 1 or 2

Superscript:

quantity in one direction

3.3 RADIATION BETWEEN FINITE AREAS

3.3.1 Net Radiation Method

Consider an enclosure composed of N discrete surface areas as shown

in figure 3-1. The objectives of the analysis will be to analyze the radia-

tion exchange between the surface areas for problems involving two

types of boundary conditions: (1) the required energy supplied to a

surface is to be determined when the surface temperature is specified,

and (2) the temperature that a surface will achieve is to be found when

a known heat input is imposed.

There is a complex radiative exchange occurring inside the enclosure

as radiation leaves a surface, travels to the other surfaces, is partially

reflected, and is then rereflected many times within the enclosure with

partial absorption at each contact with a surface. It would be very com-

plicated to follow the beams of radiation as they undergo this process;

fortunately, it is not necessary to do this. An analysis can be formulated

in a convenient manner by using the "net radiation method." This method

was first devised by Hottel (ref. l) and later presented in a different man-
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k

FICUBz 3-1.-Enclosure composed of N discrete surface areas with typical surfaces j and

k (shown in cross section for simplicity).

ner by Poljak (refs. 2 and 3). An alternate approach was given by Gebhart
(ref. 4). All of the methods are basicaUy equivalent (as demonstrated in

ref. 5); the Poljak approach, which the present authors generally prefer,

will be given in this chapter. The Gebhart method is briefly presented in

appendix B.
Consider the kth surface having area Ak of the enclosure shown in

figures 3-1 and 3-2. The quantities q, and qo are the rates of incoming
and outgoing radiant energy per unit surface area, respectively. The

quantity q is the energy flux supplied by some external means to the
surface to make up for the net radiative loss and thereby maintain the

specified surface temperature. A heat balance at the surface provides
the relation

Q_ = qkA_ = (qo, k -- q,, k)Ak (3-1)

A second equation results from the fact that the energy flux leaving

Qo,k "qo,kAk

-ql.

Ok -qkAk

FIGURE 3-2.--Energy quantities incident upon and leaving typical surface of enclosure.
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the surface is composed of directly emitted plus reflected energy. This

_ves

qo.k = e_o'T4 + pkqi, k
(3-2)

ffi e_o'T,_+ (1--Ek)ql.k

where the relations p_ = 1 -c_k = 1 -ek have been used for opaque gray
surfaces. The term "radiosity'" is often used for the quantity qo. The

incident flux qt, k is derived from the portions of the energy leaving the
surfaces of the enclosure that arrive at the kth surface. If the kth sur-

face can view itself (is concave), a portion of its outgoing flux will con-

tribute directly to its incident flux. The incident energy is then equal to

A_qe,t--Aiqo,iFt-k+ A2qo,zF2-e+ • • • + Ajqo, jFj-k

+ • • • +A_qo,kF_-k+ • • •+A,vqo,NFN-k (3-3)

From the configuration factor reciprocity relation (eq. (2-25)),

A iFl-k ----A_Fk-,
AzFz-_ = AkFk-z
• ° . . . • • . • . .

A NF,v- k= A kFk-,,i

(3-4)

Then equation (3-3) can be written so that the only area appearing is/It

Akqi, _ = AkFk-tqo. 1+ AkF_-2qo, _ + • • • + AkFk-jqo.j

+ " " " +AttFk-kqo. k+ • • • +AkFk-Nqo. s (3--5a)
or

N

q_.k = _ Fk-jqo,j (3-5b)

Equations (3-2) and (3-5) provide two different expressions for

q,.k. These are each substituted into equation (3-1) to eliminate q_,k

and provide these two basic heat balance equations for Qk in terms
of qo, k,

Ek

Qk (o-T - q°,,,) (3--6)

Qk= Ak (qo, k-- _.#Fk-jqo,_) (3-7)
jst
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where Qk can be regarded as either the energy supplied to the surface k

by external means or the net radiative loss from surface k.

As a first step in becoming familiar with this radiation analysis, con-
sider that equations (3-6) and (3-7) can be written for each of the N

surfaces in the enclosure. This provides 2N equations for 2N unknowns.

The qo'S will be N of the unknowns. The remaining unknowns will
consist of Q's and T's depending on what boundary quantities are

specified. As will be shown later, the qo'S can be eliminated giving N

equations relating the N unknown Q's and T's.
Some examples will now be given to illustrate the use of equations

(3-6) and (3-7) as a system of simultaneous equations.

EXAMPLE 3-1: Derive the expression for heat exchange between two

infinite parallel flat plates in terms of their temperatures Tt and T2
(T, > T2) (fig. 3-3).

Since all the radiation leaving one plate will arrive at the other plate,

the configuration factors are FI_2--F2_Iffil. Equations (3-6) and (3-7)
are then written for each plate

_ (3-8a)

-_t f q1= qo, l -- qo, 2 (3-8b)

Q2 _ _ C2

1 (3--9a)

-Q_= q2 = qo,2--qo, 1 (3-9b)

Iql

Fl¢unlg 3--3.- Heat fluxes for radiant interchange between infinite parallel flat plates.
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By comparing equations (3-8b) and (3-9b), it is evident that ql---q2 so
that the heat added to surface 1 is removed from surface 2. The flux

ql is thus the net heat exchange from 1 to 2 requested in the problem
statement. Equation (3-8a) is solved for qo,,

(1 Et)
qo., = _li- q,

El

Similarly, from equation (3-9a)

qo, zf_T_ (1--ez) T4+ (I- a2)q2 =O" z _'4l
Ez EZ

These are substituted into equation (3-8b) and the result solved for q,

ql=--q2= 1 1

,,(T----_+ _-- 1

(3-10)

The functional notation _(T) has been introduced to emphasize that

_, and E_ can be functions of temperature. Since T, and/'2 are specified,
the ci and ¢_ can be evaluated at their proper temperatures and q, di-

rectly calculated.

EXAMPLE 3--2: For the parallel plate geometry of the previous example,

what temperature will surface 1 reach for a given heat input ql while

T2 is held at a specified value?

Equation (3-10) still applies and when solved for T, gives

114i Ii+ _(T_) _(Tz)

Since the emissivity _l(T_) is a function of T_ which is unknown, an
iterative solution is necessary. A trial 7"1is selected, and then _ is chosen

at this value. Equation (3-11) is then solved for 7"1,and this value is used
to select E, for the next approximation. The process is continued until

_,(T_) and T_ no longer change with further iterations.

EXAMPLE 3--3: Derive an expression for the radiation exchange be-

tween two uniform temperature concentric diffuse-gray spheres as

shown in figure 3-4.
This situation is more complicated than the parallel plate geometry

as the two surfaces have unequal areas and surface 2 can partiaUy view

itself. The configuration factors for this case were derived in example
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qZ

. _///

FIGURE 3..-4.-Energy quantities for radiant interchange between two concentric sphercs.

2-13 and were found to be F1-2 = 1, F2- l = A 1/.42, and F,,_2 -- l - (,4 i/`42).

The basic heat balance equations (eqs. (3-6) and (3-7)) are now written

for each of the two sphere surfaces

Q, =.4t l __lel (o'T_-- qo. l) (3-12a)

QI = .4dqo. i - qo. 2) (3-12b)

Q2 ffi A2 _ (o-T_- qo, s) (3-13a)

As/

_ A_(--qo. _+ qo. 2) (3-13b)

Comparing equations (3-12b) and (3-13b) reveals that Q_ =-Q2, as

would be expected from an overallheat balance on the system. The four

equations (3-12) and (3-13) can be solved for the four unknowns qo,l,

qo. _, Qt, and Q2. This yields the net heat exchange (supplied to surface

1 and removed at surface 2)

QI = A xo'(T_ -- T_)

1
e,(T0 As LedTs) ]

(3-14)

For a case when the spheres in example 3-3 are not concentric, all

the radiation leaving surface 1 is still incident on surface 2. The view

factor F,-s is again 1 and with the use of the same a_sumptions, the

analysis would follow as before, leading to equation (3-14). However,

when sphere 1 is relatively small (e.g., one-half the diameter of sphere 2)

323-0030-69--6
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and the eccentricity is large, the geometric appearance of the system is
so different from the concentric ease that using equation (3-14) would

seem intuitively incorrect. The error in using equation (3-14) is that it
was derived on the basis that q, q, and qo are uniform over each of

At and Az. These conditions are exacdy met only for the concentric case.

EXAMPLE 3--4: Consider a long enclosure made up of three surfaces

as shown in figure 3-5. The enclosure is long enough so that the ends
can be neglected in the radiative heat balances. How much heat has to

FIGURE 3-5.--Long enclosure composed of three surfaces (ends neglected).

be supplied to each surface (equal to the net radiative heat loss from
each surface) to maintain the surfaces at temperatures T,,/'2, and T3?

To solve this problem, write equations (3-6) and (3-7) for each of the
three surfaces

A, = _ (o'T_ -- qo,,)

-_l= --Ft -Fa-zqo, z--Fl-3qo,q,, _ _qo_ t

_-- --Fz-,qo,- Fz-2qo,,- Fz-3qo,3 (3-16b)
A2-- qo, z t

Q..2= , - F3-zq°, z
A3 qo, _--F_-lqo, --Fa-aqo. a

(3-15a)

(3-15b)

(3-16a)

(3-17a)

(3-17b)
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The first equation of each of these three pairs of equations can be solved

for qo in terms of T and Q. These qo's are then substituted into the second
equation of each pair to obtain

A, -_i-F'-' -_-_FI-2El _2 A3 _3

= (1 - F,- l)crT_ -- FI_ _o'T_ - FI_ 3o'T_ (3-18a)

QI 1-e_ + Q2 /1 ,. I-_ \ Q3 r, 1-_

=-- F2_,_rT_ + (1 - F2-:)(rT_- Fz-n_rT_ (3-18b)

= - F,_,_T t - F3-,_Tt + I1 - F__,_T_ (3-18c)

Since the T's are known, the _'s can be specified from surface property

data at their appropriate T values and these three simultaneous equations
solved for the desired Q values supplied to each surface. Note that the

solutions are only first approximations, because the radiosity leaving
each surface is not uniform as assumed. This is because the reflected flux

is not uniform. Greater accuracy can be obtained by dividing each of the
three sides into more surface elements.

Now that some familiarity with the radiant energy exchange equa-

tions has been achieved by looking at a few simple examples, the system

of equations will be written in a generalized form for an enclosure of
N surfaces.

3.3.1.1 System of equations relating surface heating Q and surface
temperature T.-The form of equations (3-18) indicates that the Q's

and T's for an enclosure of N surfaces can be related in a general system
of N equations. Equation (3-6) is solved for qo, _, and this is substituted

into equation (3-7). (Note that qo.j is found by simply changing the sub-
script in the relation for qo. k.) This results in the following form for
the kth surface, a result which is also evident from equations (3-18):
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--_ F_-11-_l'h _ Fk-21-¢z - --ff--/

(),, 1 _N
..... "_ Fk-M = -- Fk- IGrT_-- Fk-2_rT_ .....

._N _.N

+ (1 -- F_-_) crT_ ..... Fk_,vcrT_

A summation notation can be used to write this as

_, 8_- -F_-' = 2 (8_,-Fk__krT_ (3-19)
j=1 tj eJ / "_J j=1

where corresponding to each surface, k takes on one of the values

1, 2,..., N and 8kj is the Kronecker delta defined as

= [ I when k = j
( 0 when k _j

When the surface temperatures are specified, the right side of equa-
tion (3-19) is known, and there are N simultaneous equations for the

unknown Q's.

In general, the heat input to some of the surfaces may he specified,
and the temperature of these surfaces is to be determined. There are

still a total of N unknown Q's and T's, and equation (3-19) provides the
necessary number of relations. Since the values of _ depend on tem-

perature, it is necessary to guess initially the unknown T's. Then the
vMues can be chosen, and the system of equations can be solved. The

resulting T values can be used to select new _'s, and the process can be

repeated until the T and t values no longer change upon further iteration.
Again, note that the results by this method will be approximate be-

cause the uniform radiosity assumption is not perfectly fulfilled over
each finite area.

EXAMPLV. 3--5: Consider an enclosure of three sides, as shown in

figure 3-5. Side 1 is held at T_, side 2 is uniformly heated with a flux

q_, and the third side is insulated. What are the equations to determine
QI, T2,and T_?

The conditions of the problem give Qz/A2-_q2 and Qa-_O. Then

equation (3-19) yields the following three equations where the unknowns

have been gathered on the left side:
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+ F,-s_T_ ffi (1 --F,-I)o'T_'

1 -- E2
+ q2FI-2--

_2

79

(3-20a)

QIF__ , 1-E,
AI - ,st

---- (1-F2-2)crT_+ F2-atrT_f-F2-,(rT_

(!-F221-.2 
-- q_ \ _2 - (_ /

(3-20b)

-Q_ Fs , 1 - (, + Fa-,(rT_- (1 -Fa-a)(rT_ =--F3_,crT_
A1 - (1

1--(2
+ q2F=-2

(2
(3-20c)

If t2 depends on temperature, an iterative procedure is needed where

a ?'2 is chosen; then (2(T2) is specified, the equations are solved for T2,
and the iteration is continued until (2(T2) and T2 no longer change.

3.3.1.2 Solution method in terms of outgoing radiative flux qo.-An

alternate approach for computing the radiative exchange within an
enclosure involves first solving for q, for each surface and then comput-

ing the Q's or T's. When sighting a surface with a radiation detector,
it is qo that is intercepted, that is, the sum of both emitted and reflected
radiation. For this reason, it is desirable in some instances to determine

the qo values as primary quantities. Of course, in the previous formulation

(section 3.3.1.1), the qo's can be found from Q's and T's by using equation

(3-6).
When the surface temperatures are all specified, the set of simul-

taneous equations for qo's is obtained by eliminating Q_'s from equations
(3-6) and (3-7). This yields the following equation for the kth surface:

qo. k-- (1 --Ek) _ F___qo.jf¢k(rT_ (3-21)
/='1

To illustrate, for a system of two surfaces, equation (3-21) becomes

qo. 1- (1-_)F,-,qo. 1- (1-(l)Fl_2qo.2=¢l(rT_ (3-22a)

qo, 2- (1-_)F2-1qo, ,-- (1-_z)F2_2qo.2=_:_rT_ (3-22h)
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An alternate form of equation (3-21) is

[Ski -- (1 -- ek)Fk-j] qo,_ -- eko'T_
j=!

(3-23)

With the T's given, the qo's can be found from equation (3-23). Then,
if desired, equation (3-6) can be used to compute Q for each surface.

When Q is specified for some surfaces and T for others, equation
(.3-23) is used for the surfaces with known T in conjunction with equation

(3-7) for the surfaces with known Q, to obtain the set of simultaneous

equations for the unknown </o's. Once qo is obtained for a surface, it can
be combined with the given Q (or T) and equation (3-6) can be used to

determine the unknown T (or Q). In a general form, if an enclosure has

surfaces 1, 2..... m with specified temperature and the remaining
surfaces m+ 1, m+2 ..... N with specified heat input, the system of

equations for the qo's is from equations (3-23) and (3-7)

N

[akj- (i -E,,)F,,-j] qo.j = t_T_.
jml

1 _ k _ m (3-24a)

2 (8_J--Fk-j)q°'J= m-l- 1 _ k _ N (3-24b)
J-1

Note that, for a black surface with Tk specified, equation (3-24a) gives

qo. k--'-o'T1 so that the qo, k is known, and the number of simultaneous
equations can be immediately reduced by one.

Surface3
T3. 1000oR _2in.---_

_3 1_

Surface 2

Perfectly
insulated

_2 "0. 8-,,.

/

/

_ //'/ _

t I -0.6

4in.

.l

FIGUItE 3--6.-Enclosure used in example 3--6.
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EXAMPLE 3--6: A frustum of a cone has its base heated, as shown in

figure 3-6. The top is held at 1000° R while the side is perfectly insulated.
Surfaces 1 and 2 are assumed gray and diffuse while surface 3 is black.

What is the temperature of side 1? How important is the value of e2?

By using the configuration factor for two parallel disks (see table A-I
in appendix A as a source for the F factor), it is found that F3-1 = 0.33.
Then F_-2=l--F3-1=0.67. From reciprocity AIF_-a=Ad:3-1 and
AzF2-3 = AaF3-_, it is found that Fl-3 = 0.147 and F_,-3= 0.13. Then

FI__f1-FI_3=0.853. From AIFI-2=A.zFz-I, F-,-1=0.372. FinaUy,

F2_2= 1-F__I-F2-a--0.498. From equation (3-19) and by noting that

Qz = 0 and 1-_a--0, the three equations can be written as

10-_-6= cr[T_ - 0.853T_ -- 0.147(1000)']

(1--0.6) = or[_ 0.372Tt4 + (1- 0.498)T_-- 0.13(1000)'1
- 1000(0.372) 0.6

-- 1000(0.33) (1-0.6) 4Q3= cr[-0.33T_-0.67T_+ (1000)']
0.6 A3

These three equations can be solved for the unknowns Tt, T.,, and Q3.
The result requested in the problem is TI = 1310° R. Since Q2--0, all

of the terms involving _: were zero so that ¢_ does not appear in the
simultaneous equations; hence, for this gray-diffuse analysis the emis-

sivity of the insulated surface is of no importance.

3.3.2 Matrix Inversion

When many surfaces are present in an enclosure, a large set of simul-

taneous equations such as equation (3-19) or (3-24) will result. These
equations can be solved using a digital computer along with standard

computer programs that can accommodate several hundred simultaneous

equations.
A set of equations such as equations (3-24) can be written in a shorter

form. Let the known quantities on the fight side be Ck and the quantities
in brackets on the left side be a_o. Then the k equations can be written

as

N

akjqo, _ = C_ (3-25a)
j=l

where
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/

=I 8k_--(I--e_)Fkoj

[8kj--Fk-_
I_ko'7"_ l_k_m

Ckffi l Qk

(3-25b)

For an enclosure of N surfaces, the set of equations then has the form

au qo, 1+ at2qo, z+" " "+ a, jqo, j +" " "+ aisqo, ,v= C,

oalqo, , + c_,zqo,2+" " "+ a_jqo, j+ " " "+ a_vqo, s = C_

• • • • • • • • . • • • • o ° ° * • • .... . • • • • •

ae,qo. , + a_zqo. 2+" • "+ attjqo.j + " • "4-a_qo, N= Ck

• • • ° • • . • • • • • • • • • , • .... o • , • ° • •

amqo, t + a_qo.i_+ " • "+ a_jqo, j +" • • + ast_qo, ,v= Cs

(3-26)

The array of a_¢ coefficients is termed the matrix of coefficients and is

often designated by a bracket notation

all a12 • • • _IJ • • - alN"]

L,ctlvl aN_ " " " aNJ " " " aN,V J

(3-27)

A method of solving a set of equations such as equations (3-26) is to
obtain a second matrix a -t, which is called the inverse of matrix a, that is,

r'd,, _,2 • • • _¢,j • • • _:,N-

•_'_t d_ • . • _',j • • • _g2,v

matrix a -1"= [,afkj]_, ..........................

• • ° , ..... , • ° • • • ° ° • • ° • . , ° °

(3-28)

In the inverse matrix there is a term mfkj corresponding to each akj in

the original matrix. The _¢'s are found by operating on the a's in a way
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briefly described as follows: If the kth row and jth column that contain

element akj in a square matrix a are deleted, the determinant of the

remaining square array is called the minor of element a_# and is denoted
by Mk#. The cofactor of a.# is defined as (--1)k÷#Mk#. To obtain the

inverse of a square matrix [a_j], each element ak# is first replaced by
its cofactor. The rows and columns of the resulting matrix are then
interchanged. The elements of the matrix thus obtained are then each

divided by the determinant lakjl of the original matrix [ak#]. The ele-
ments obtained in this fashion are the dkj. For more detailed information

on matrix inversion, the reader should refer to a mathematics text such
as reference 6. There are standard digital computer programs that will

numerically obtain the inverse coefficients _'kj from a matrix of ak#
values.

After the inverse coefficients have been obtained, the unknown qo

values in equations (3-26) are found as the sum of products of ,_¢'s and
C's

qo, l -_ dnCi + _'lzCz +" " "+ M',jCj +" " • + Ja(l•vCs

qo, 2= ._n C_ + ,sf =C2 +. • •+ _2jCj +'i " "+ _._vCs
(3-29a)

• • • . • . • • • • • • • . • ° . • • . • • . • . . • •

qo, I¢= _1¢1C1 + ._C_ +" • " + ,.zf k/Cj +" • • + ,._ksC,v
or

qo. k= _ _kjCj _(3-29b)
J-t

Therefore, the solution for each qo._ is in the form of a sum of _o'T 4 and

Q/A that the C's represent, each weighted by an _¢ coefficient.

For a given enclosure the configuration factors Fk-# in equation
(3-25b) remain fixed• If, in addition, the s_'s are constant, then the

elements akj, and hence the inverse elements _¢_#, remain fixed for the
enclosure. The fact that the agk# remain fixed has utihty when it is
desired to compute the radiation quantities within an enclosure for many
different values of the T's and Q's at the surfaces. The matrix need

be inverted only once; then equation (3-29b) can be applied for different

values of the C's. These comments also apply to the system of equations

given by equation (3-19). After the inverse is taken, the Q's can be

found as a weighted sum of the T's.

•3.4 RADIATION BETWEEN INFINITESIMAL AREAS

3.4.1 Generalized Net Radiation Method for Infinitesimal Areas

In the previous section the enclosure was divided into finite areas.

The accuracy of the results is limited by the assumptions in the analysis
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that the temperature, and energy incident on and leaving each surface,

are uniform over that surface. If these quantities are nonuniform over
part of the enclosure boundary, the boundary surface must be subdivided
until the variation over each area used in the analysis is not too large.

It may be necessary to carry out several calculations in which succes-

sively smaller areas (and hence more simultaneous equations) are used
until the solution no longer changes significantly when the area sizes

are further diminished. In the limit, the enclosure boundary or a portion

of it can be divided into infinitesimal parts; this will allow large variations

in T, q, q_, and qo to be accounted for.
The formulation in terms of infinitesimal areas leads to heat balances

in the form of a set of integral equations. By using both exact and approxi-

mate mathematical techniques that have been developed for integral

equations, it is sometimes possible to obtain a closed-form analytical
solution. When it is not possible to obtain an analytical solution, the

integral equations can be solved numerically. In the case of a numerical
solution, the solution method is similar to that used in the previous dis-

cussion dealing with finite areas.
Consider, as before, an enclosure composed of N finite areas. These

areas would generally be the major geometric divisions of the enclosure
or the areas on which a specified boundary condition is held constant.

J

1

FIGuRI_3-7.-gnclosure composed of N discretesurface areas with areas subdivided into
infinitesimal elements.
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Each of these areas is further subdivided into differential area elements,

as shown for two typical areas in figure 3-7. As before, throughout the

following analysis the surfaces will be considered diffuse gray. The addi-
tional restriction is now made that the radiative properties are independ.

ent of temperature.
A heat balance on element ddk located at position _k gives

(3-30)

The outgoing flux is composed of emitted and reflected energy

qo.k(Tk)= _ko'T_(Tk)+ (1-- ek)q,.,,(7,,) (3-31)

The incoming flux in equation (3-31) is composed of portions of the
outgoing fluxes from the other area elements of the enclosure. This is a

generalization of equation (3-3) in the respect that over each finite sur-
face, an integration is performed to determine the total contribution that

the local flux leaving that surface makes to the quantity q_,k

= f. qo.t(7,)dFdl-_(F,, F_)clA,d.4kql, it (_t )
J /l t

+ • . . +_ qo,k (Tfft)dF,_. _it)d,4 _
J `4It

+ • • • +f qo.,v(E_)dF___(FN, Fk)d.AN (3-32)
./,4N

The second integral on the fight is the contribution that other differential

elements d,q_ on surface Ak make to the incident energy at d,4k.

By using reciprocity d,4_dF¢_dk=d,4kdF_-dj, a typical integral in

equation (3-32) can be transformed to give

aj qo.j(_j)dFdj-_(_j, F_)d.,4j = f`4j qo.j(_)dFdit-dj(Fj. Fk)d.4k

By operating on all the integrals in equation (3-32) in this manner, the
d.,4k will divide out of the equation, and the result becomes

q,,k(Fk) =_ f`4 qo.j(_)dF_-_j(_, Fit)
j=i J

(3-33)

Equations (3-31) and (3-33) provide two different expressions for
q_.It(Fit). These are each substituted into equation (3-30) to provide two

expressions for q_(Fk) comparable to equations (3-6) and (3-7)
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Ek

qk(7,) = 1---"_k [o'T_(Tk) --qo, _(?_)] (3-34)

As shown by equation (2-10), the differential configuration factor

dF__, o contains the differential area d,4j. To place equation (3-35) in a
more standard form where the variable of integration is explicitly shown,

it is convenient to define a quantity K(_, _k) by

K(,_, _) -dF__¢(¢, _)
d,4, (3-36)

Then equation (3-35) becomes the integral equation

qk(Fk)----qo,_(Fk) -- _, qo,j(_)K(Tj, 7k)dAj
j- 1

(3-37)

The quantity K(Fj, 7k) that appears under the integral sign with the de-

pendent variable, such as in equation (3-37), is called the kernel of the
integral equation.

As in the previous discussion for finite areas, there are two paths that
can now be followed:

(1) When the temperatures and imposed heat fluxes are important,

equations (3-34) and (3-35) can be combined to eliminate the variables
qo. This gives a set of simultaneous relations directly relating the surface

temperatures T and the imposed heat fluxes q. Along each surface area,
either the T or the q will be specified by the boundary conditions. The

remaining unknown T's and q's can then be found by solving the simul-
taneous relations.

(2) Alternately, when qo is an important quantity, the unknown q's
can be eliminated by combining equations (3-34) and (3-35) for each

surface that does not have its q specified as a boundary condition. For a
surface where q is known, equation (3-35) can be used to relate the qo's to

each other directly. This yields a set of simultaneous relations for the

qo's in terms of the known q's and T's that are specified by the boundary
conditions. After solving for the qo's, equations (3-34) can be used, if

desired, to relate the q's and T's where either the q or T will be known
at each surface from the boundary conditions.

Each of these procedures will now be examined.
3.4.1.1 Relations between surface temperature T and surface heat-

ing q. -1"o eliminate the qo in the first method of solution, equation (3-34)

is solved for qo, k(Fk), giving
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" 4 1--_
qo, ,_rk)= o'T_{7_)-_ q_(_k) (3-38)

Equation (3-38) in the form shown and also with k changed to j is then
substituted into equation (3-35) to eliminate qo. k and qo.j, which yields

(k j., _j j

j=1 j

Equation (3-39) directly relates the surface temperatures to the heat
fluxes supplied to the surfaces.

EXAMPLE 3-7: An enclosure of the general type in figure 3-5 is com-

posed of three plane surfaces, and for simplicity is infinitely long so
that the heat transfer quantities do not vary with length. Surface 1 is

heated uniformly and surface 2 is at a uniform temperature. Surface 3
is black and at zero temperature. What are the governing equations

needed to determine the temperature distribution over the perimeter
of surface I?

With /'3--0, _--1, and the self-view factors dFo-¢. = O, equation

(3-.39) can be written for the two plane surfaces I and 2 having uniform

q: and T2 as

ql 1--E._ fa q_(F.,)dFa,-cz(_.,, _1)=o'T_(7_)

-o'T_ fA, dFal-_(_-_, _)

q2(_2__.__)_ ql 1 -- _.__.___:fA
@, Et t

dF_-dl(Fl, _)= o'T_

(3-40a)

--fA, o'T_(_'_)dFa2-ddf,, _'2) (3-40b)

A similar equation for surface 3 is not needed since equations (3-40) do

not involve the unknown q3(F3) as a consequence of _ = 1 and 7"3= 0.
From the definitions of F factors,

f_ dFd1-¢_ = Fdl-2 and f_ dFtz-_t = F_-t
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equations (3-40) simplify to the following relations where the unknowns

have been placed on the left:

°'T_(7')+ _'_ far q.,(Fz)dFal-cz(_, Fl)=°'T4F_l-z+_41 (3-41a)

fA trT_(_)dFaz_a_(_," q2(_,)__ + I--4____!|75)+ o.T 4 q,
++ 45 41

Fd2-1

(3-41b)

Equations (3-41) can be solved simultaneously for the unknown dis.

tributions TdTD and q2(Tz). Some methods for solving such a set of integral

equations will be discussed in section 3.4.2.

3.4.1.2 Solution method in terms of outgoing radiative flax qo- - A second

method of solution results from eliminating the qk(Tk) terms from equa-

tions (3--34) and (3-35) for the surfaces where qk(7_) is unknown. This pro-

vides a relation between qo and the T variation specified along a surface

"Lq*, lt(_k)ffi EkO'T_('_k}+ (1 -- 4tz) Z qo,j(_j)dFdk-dj(_j, Fk) (3-42)
j=l +,

When the heat supplied to surface k, qk(Tk), is known, equation (3-35)

can be used directly to relate qk and qo. The combination of equations

(3-42) and (3-35) thus provides a complete set of relations for the un-

known qo's in terms of known T's and q's.

This set of equations for the qo'S will now be formulated more explicitly.

In general, an enclosure can have surfaces 1, 2 ..... m with specified

temperature distributions. For these surfaces, equation (3-42) is utilized.

The remaining N-m surfaces m + 1, m + 2 ..... N have an imposed

heat flux distribution specified. For these surfaces equation (3-35) is

applied. This results in a set of N equations for the unknown qo

distributions

qo, _lk)--(l--4k)
jnl J

l_k_m (3-43a)

qo, j ( Tj) dF __¢ ( _ , Fk)= qk ( F_)

rn+ l <_k_N (3-43b)

After the (/o's are found, equation (3-34) is applied to determine the

unknown q or T distributions,
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qk(_k) = 1 ---'----_k[crT_(Tk) -- qo, k(Fk) ] 1 _ k _ m (3-44a}

CrT_ (7k) =l--¢-------_kqk(7_) +qo, k(_k) m+ l _ k _ m (3-44b)
Ek

3.4.1.3 Special case when imposed heating q is specified for all surfaces.-

There is an interesting special case when the imposed energy flux q is

specified for all surfaces of the enclosure and it is desired to determine
the surface temperature distributions. For this case the use of the

method of the previous section, where the qo's are first determined

(section 3.4.1.2), has an advantage over the method given by equation
(3-39) where the T's are directly determined from the specified q's
(section 3.4.1.1). This advantage arises from the fact that equation (3-43b)

is independent of the radiative properties of the surfaces. This means

that for a given set of q's the qo'S need be determined only once by

writing equation (3-43b) for each of the surfaces. The temperature
distributions are then found from equation (3-44b), which introduces

the emissivity dependence. This would have an advantage when it is
desired to examine the temperature variations for various emissivity

values when there is a fixed set of q's.
In the case when the surfaces are all black, then _k= 1 and equation

(3-44b) becomes

o'T_ ( _k)blaek----qo, k(7_)

Since the qo.k's are independent of the emissivities, these qo. k's are also
valid for surfaces where Ck¢ 1. The solution in equation (3-44b) can

then be written as

o'T_(Fk) = 1- a_....___qk(F_) + crT_(Fk)btack (3--45)

This relates the temperature distributions in an enclosure for Ck_ 1

to the temperature distributions in a black enclosure having the same
imposed heat fluxes. Thus, once the temperature distributions have been
found for the black case, the fourth-power temperature distribution

o'T_(Fk) for gray surfaces are found by simply adding the term

[(1 --_k)/Ek]qk(Fk).
To this point, a number of formulations of the governing equations of

radiation interchange within an enclosure have been made. In table 3-I
the relations that have been derived for finding quantities of interest, such

as Q, T, and qo on various surfaces in terms of given quantities, are
summarized for convenience.
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TABLE 3-'I.--RELATIONS BUFWEE_; ENERGY FLUX AND TEMPERATURE IN D[FFUs£-GsxY

ENCLOSURES

Boundary conditions Desired quantities

Finite areas

Infinitesimal

areas

Tit on all surfaces
l_ks_N

Qiton all surfaces
I._k_N

Tit for l _ k _ m

Qit for m+ l _k _N

Tk on all surfaces
la;k_N

qit on all surfaces
l_k_N

Tk for l ,g k _ m

qit for m+ l _k_N

qo, it for l _ k _ N

T_for l_k_m

qk for m + 1 a;k_;N

q#, It

Qt for l _k_m

Tk for m+ l s;k_N

qo, It

qit

qo, It

47o, It

qk for l _k_m

! Tit for m+l _k_N

q#, It

qit for l _ k _ m

Tit for m + l ,s; Ic_ N

Equation

(3-19)

(3-23)

(3-19)

(3-24) and (3-6)
or (3-19)

(3-24)

(3-39)

(3-42)

(3-35) and

(3-44b)

t3-35)

(3-39) or (3-43)
and (3-44)

(3-43a) and
(3-43b)

(3-44a)
(3-44b)



EXCHANGEIN DIFFUSE-GRAYENCLOSURE 91

EXAMPLE 3--8: A relatively simple example of a heated enclosure is a

circular tube shown in figure 3-8 open at both ends and insulated on the

outside surface (ref. 7). (1) For a uniform heat addition along the tube

wall and a surrounding environment temperature of 0° R, what is the

r Surface I _Surface Z [inside
i

_T l - 0 or Te / surface of tube wall)

[a)

-7
D-1

x

_-Surface 3

T3 - 0
or Te

14

12

10

(b_ OI I t I I
I 2 3 4

x/O

(a) Geometry and coordinate system.

(b) Distribution of qo on inside of tube for L/D-- 4.

Fl(;ung 3-8.-Uniformly heated tube insulated on outside and open to environment at both
ends.

temperature distribution along the tube? (2) If the surroundings are at

temperature Te, how does this influence the temperature distribution?

(1) Since the open ends of the tube are nonreflecting, they can be as-

sumed to act as black disks at a specified temperature of 0_ R. Equation

(3-44b) is then used for these two disks to find their qo. With el = e3 = 1,

equation (3-44b) gives

qo, 1= qo.a = tTT_= o'T_ = 0

323-003 0-.69--7



°..

92 THERMAL RADIATION HEAT TRANSFER

Consequently, the summation in equation (3-43b) will provide only

radiation from surface 2 to itself. Since the tube is axisymmetric, the two

differential areas ddk and dd_' can be taken as rings, and they are

located at x and y, respectively. For convenience, all lengths are non-

dimensionalized with respect to the tube diameter; then equation

(3-43b) yields

_ ¢p.,Iqo,..(_) -- qo,_(:o)dF_-._([_-_l) =q.., (3-46a)
J_=O

where _ = x/D, "1= y/D, l = L/D, and dFq__( Irl - _:l) is the configuration

factor for two rings a distance It/-srl apart and is given by (for source see
table A-I in appendix A)

dF - ¢1,7-61) [1
= J a_ (3-46b)

Absolute value signs are used on "_- _: because the configuration factor

depends only on the magnitude of the separation distance between the

rings. When ]T/-¢]--_0, dF-=d'rl, and this represents the view factor

from a differential ring to itself. Equation (3-46a) can be divided by the

constant q2, and the solution for the dimensionless quantity qo. z(¢)/qz

can be found by numerical or approximate methods for solving linear

integral equations. A discussion of these methods will be given in sec-

tion 3.4.2. The resulting qo, 2(/j)/qz distribution is shown in figure 3-8(b)

for a tube 4 diameters in length. From equation (3-44b), the distribution

of temperature to the fourth power along the tube is given by

1
o'T_ff) = qz + qo, 2(_)

Since q., is a constant, the distribution T_(_:) has the same shape as the

distribution qo, 2(st). The wall temperature is high in the central region

of the tube and low near the end openings, where heat can be radiated

easily to the low-temperature environment.

(2) Now consider the case where the environment is at T_ rather than

at zero. The open ends of the cylindrical enclosure can be regarded as

perfectly absorbing disks at Te. The integral equation (3-43b) now yields

f lq., z(_)-- .o qo, z(_)dFa¢-_lT! - _l)- orT:Fd¢_,(_)- crT: Fa¢-s( l - _) = qz

where Fat-l(_:) is the configuration factor from a ring element at _: to
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disk 1 at _--0, that is,

t
_+_

Fdt_l(sr) = (_ + 1)1/z

93

Since the integral equation is linear in the variable qo. =(_:), let a trial

solution be in the form of a sum of two parts where for each part either

T_=O or q==O

qo. :(_)-- qo. :(_:)lre=O+ qo. _(_:)lv,-o

Substitute the trial solution into the integral equation to get

qo, f(_)lre=o+ qo,,(_)l_.o- qo, ,(_)lre-o dFd_-_(l_--_l)
=0

-- qo, 2(_)[q,=0 dFa¢-_(l_ - _[) - o'TIF_-,(_) - o'T4eFat_a(l- () = q.,
mO

For Te - 0, equation (3-46a) applies; subtract this equation to give

qo. :(_)lq,-o- qo,
10

-- o'T_F_t-i (_) -- trT*tFa-_ ( l - _) = 0

As can be verified by direct substitution and then integrating, the solu-
tion is

qo,d q -of o'T_

This would be expected physically for an unheated surface in a uniform
temperature environment. The temperature distribution along the tube

is found from equation (3-44b) as

o'T_(_:)= 1-_ q2"4-qo.=(_:)ITe=o+ qo,2(_:)lq=-o
_z

([=

where qo,2(_:)Jr_-0 was found in part (1) of this example. The super-

position of an environment temperature has thus added a crT_ term to

the solution for o'T_(_:) found previously for T_ = 0.
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EXAMPLE 3--9: This example will consider the emission from a long

cylindrical hole drilled into a material that is all at uniform temperature

T (fig. 3-9). The hole is assumed sufftciently long that the surface at the

bottom end of the hole can be neglected in the radiative heat balances.

The environment outside the hole is taken to be at 0 ° R. If a position is

viewed at x on the cylindrical side wall of the hole, the energy leaving

the wall is composed of the direct emission plus the reflected energy, the

total being the quantity qo(x). An apparent emissivity is defined as

Eo (x) --- qo(x)/crT 4. The objective of this analysis will be to determine how

_(x) is related to the actual surface emissivity • where e is constant

over the side of the hole. The integral equation governing the radiation

exchange within the hole was first derived by Buckley (refs. 8 and 9) and

Li// /1 ///// /

y i ¢
l- I o %cx_

////i"/////_

I_ X .,,_-,_

(al

Emissjvity,

LO O.9

.5

.8

7_

.2

O
(b) 1 2 3 4 5

xYD

(a) C,eometry and coordinatesystem.
(b) Apparent emissivityof cylinder wall.

FIGU_I_3-9.--Radiant emissionfrom cylindrical hole at uniform temper,,ture.
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later by Eckert (ref. 10); both investigators obtained approximate ana-

lytical solutions. The results were later carried out numerically to
greater accuracy by Sparrow and Albers with a digital computer (ref. 11).

The opening of the hole can be approximated by a perfectly absorbing
(i.e., black) disk at zero temperature; then from equation (3-44b)(be-

cause e--1 and T--0 for the opening area) the qo for the opening disk
is zero. Hence, the governing equation for the enclosure is equation

(3-43a) written for the cylindrical side wall and including in the sum-
mation only the radiation from the cylindrical wall to itself. As in ex-

ample 3-8, the configuration factor is that for one ring of differential
length on the cylindrical enclosure exchanging radiation with a second

ring at a different axial location, as given by equation (3-46b). Equation
(3-43a) then yields

qo(e)- (1-.) f,"o (3-47)

where _-=-x/D, vl=y/D, and dF_-_(17/-_:[) is given.by equation
(3-46b). After dividing by o'/4 which is constant, the apparent emissivity

is found to be governed by the following integral equation:

+'(+)- =. <3-+8)

The solution of equation (3-48) was carried out for various surface

emissivities e, and the results for ea as a function of location along the

hole axe shown in figure 3-9(b). The radiation leaving the surface

approaches that of a blackbody as the wall position is increased to greater
depths into the hole. At the mouth of the hole, ea = "vt_¢as shown by

Buckley (refs. 8 and 9).

EXAMPLE 3-10: What are the integral equations governing the radi-
ation exchange between two parallel opposed plates finite in one dimen-
sion and infinite in the other as shown in figure 3-10? Each plate has a

specified temperature variation which depends only on the x- or y-coordi-

nate shown, and the environment is at zero temperature.
From the discussion in example 2-4, the configuration factors between

the infinitely long parallel strips d.A_ and d.,4.+are

1 a 2

dFd,-m =1 d(sin ¢) =[ [(y_x)Z + a.+]a/zdy

1 o.2

=_ [(y-x)_+ _]_;_



96 THERMAL RADIATION HEAT TRANSFER

Tenvironment - 0
L

(a|

Insulation-,

_t_
I

(hi I L -

(a) pax_llel platesof widthL and infinite length.
(b) Coordinatesin crosssectionof gap between parallel plates.

FIGUBE3--10.--Geometry for radiation between two para_le]plates infinitely long in one
direction and of finite width.

The distribution of heat flux added to each plate can be found by applying

equation (3-39) to each of the plates. As in examples 3-8 and 3-9, the

environment at T= 0 does not contribute anything since it provides an

effective emissivity of unity and a temperature of zero at the edge

opening between the plates. The governing equations are then

q_(x) 1--_ fuz 1 a=
(I _2 :-/./2 qz(y) _ [(y_x)_,+aZ]312 dy=crT_(x)

__t,/2 o'T_(y) 1 az a'p/ dy (3-49a)

q_(y) 1 -- E1 fL/= 1 a _'
e_ _t :-U2 ql(x) _ [(y_x)Z+aZ]3/z dx= orT:_(y)

1 12":'
_ JfUZ-u_-o'Tt(x) -_ [(y_x)Z + a=]3/z dx (3-49b)
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An alternate formulation can be obtained by applying equation (3-43a).

This yields the following two equations for qo. _(x) and qo,_(y):

42 1 a 2qo, l(x)- (1--_1) Uz qo,_(Y) _ [(y_x)2+a2]a_ dyffi_lo'Tt(x)

(3-50a)

uz 1 a zqo,,(y) -- (1--_2) qo, z(x) dx = _zcr_ (y)_-u, 2 CCy-x)'+_'P/_
(3-50b)

After the qo's are found, the desired ql(x) and q2(y) are obtained from

equation (3-44a); they are

q, (x) = _ [_,r,_(x)- qo., (x) ] (3-51a)

G2

q, (y) = _ [¢r_ (y) - qo.,(y) ] (3-51b)

3.4.2 Methods for Solving Integral Equations

The previous examples have revealed that the unknown wall heat

fluxes or temperatures along the surfaces of an enclosure are found from

the solutions of single or simultaneous integral equations. The integral

equations are linear; that is, the unknown q, qo, or T 4 variables always

appear to the first power (note that T 4 is considered as the variable

rather than 2"). For linear integral equations there are a number of

analytical and numerical solution methods that can be utilized. These

are discussed in standard mathematics texts (e.g., chapter 4 of ref. 6).

The use of some of these methods will now be discussed as applied to

radiation problems, and some examples will be given.

3.4.2.1 Numerical integration yielding simultaneous equations.-In

most instances the functions inside the integrals of the integral equations

are complicated algebraic quantities. This is because these functions

involve a configuration factor which, for most geometries, is not of a

simple form. There is generally little chance that an exact analytical

solution can be found. A numerical solution must then be attempted in

most cases. The integrals are expressed in finite difference form by divid-

ing each surface into a grid of small finite increments. The result is a

set of simultaneous equations for the unknown quantities at each incre-

mental position. This procedure is best illustrated by a specific example.
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EXAMPLE3-11: Referring to the integral equation in equations (3-46),

derive a set of simultaneous algebraic equations to determine the qo, z
distribution for a length l = 4.

For simplicity, divide the length into four equal increments (A'0 = 1),

and use the trapezoidal rule for integration. When equation (3-46a) is

applied at the end of the tube where x=0, there is obtained

qo.,(0) - [½qo._(0)K(I0- 0l) + qo, z(1)K(]1-0l) +qo,2(2)K(12-OJ)

+qo,,(3)K(j3-O])+½qo.,(4)K(14-Ol)](1)=q2 (3-52)

The quantity included in brackets is the trapezoidal rule approximation

for the integral. The quantity K(l_-xI)--dF(l_-xl)/d'q is the alge-
braic expression within the braces of equation (3-46b). The qo,2(O)

terms in equation (3-52) may be grouped together to provide the first of
equations (3-53). The other four equations of the set are obtained by

writing the finite difference equation at the other incremental positions

along the cylindrical enclosure

qo, ,(0) [1 --½K(0) ] - qo, :( 1)K(1) -- qo, z (2) K(2) - qo,z(3)K(3)

-½qo,:(4)K(4) =q:

-½q°. z(0)K(1) + qo,z(1) [1- K(0) ] -qo, z(2)K(1)

- qo, 2(3)K(2) -½qo, 2(4)K(3) = q_

--½qo, z(0)K(2) -qo,2(1)K(1) + qo,z(2) [1- K(0)]

- qo, 2(3)K(1) -½qo, 2(4) K(2) = q.,

-½qo, z(0)K(3) -qo,2(1)K(2) -qo,2(2)K(1)

+ qo, 2(3) [ 1 - K(0) ] -½qo, z (4)K(1) = qz

-½q°, z (0)K(4) - qo, z ( 1)K(3) - qo, 2(2)K(2) - qo, z (3)K( 1 )

+ qo. ,,(4) [1-½K(O) ] = q2,

, (3-53)

These equations are solved simultaneously for the unknown qo values at

the five surface locations. From the symmetry of the configuration and
the fact that q., is uniform along the enclosure, it is possible in this

instance to simplify the solution by using the equalities qo. 2(0) = qo, ..(4)
and qo.2(1) = qo, z(3).

In practice a set of equations such as equations (3-53) is first solved

for a moderate number of increments along the enclosure. Then the
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increment size is reduced, and the set of equations is solved again. This

process is continued until sufficiently accurate qo values are obtained.

This procedure would generally be programed on an electronic com-
puter in terms of an arbitrary increment size.

Equations (3-53) were derived using the trapezoidal rule as a simple

numerical approximation to the integrals. Other more accurate numeri-
cal integration schemes can be used which may reduce the number of

increments required to provide sufficient accuracy in a given problem.

One precaution should be noted. The quantity qo.jdFak-d¢ may, in
certain instances, go through rapid changes in magnitude because of the

geometry involved in the configuration factor; for example, dF_k-d¢ may
decrease very rapidly as the distance between d,4k and d,4_ is increased.

This may mean that an integration approximation such as Simpson's
rule will not be very accurate since the shape of qo,j dF___j may not

be approximated well by passing a parabola locally through the func-
tion. Care should be taken in selecting an integration scheme that can

approximate well the general behavior of the functions involved.

Example 3-11 contained only one integral equation. The situation
described by equations (3--49) involves two integral equations. Sur-
faces 1 and 2 can both be divided into increments, and the equations
can be written in finite difference form at each incremental location.

This will yield a set of simultaneous equations equal to the total number
of chosen positions on both plates, and the equations can then be solved

simultaneously for the q_ (x) and t/,,(y) distributions.

Another way of solving the two integral equations numerically is by

iteration. With T_(x) and T..,(y) specified, the right sides of the equa-
tions are known as functions of x and y. Starting with equation (3-49a),

a distribution for q2(y) is assumed as a first trial. Then the integration
can be carried out numerically for various x values to yield qz(x) at

these x locations. This ql (x) distribution is then inserted into equation

(3-49b) and a q2(y) distribution is determined. This q2(y) is then used
to compute a new q_(x), and the process is continued until ql(x) and

q_(y) are no longer changing as the iterations proceed.
3.4.2.2 Use of approximate separable kerneL-In an integral equa-

tion such as equation (3-46a), the solution can sometimes be simplified if

the kernel is of a separable form, that is, equal to a product (or sum of

products) of a function of _ alone and a function of 7k alone. It is re-
called from equation (3-36) that the kernel is

K(Tj, 7k)= dF ak_,f_(7_, 7k) l dA j

For a separable kernel, the function of Ykcan be taken out of the inte-

gral, thereby simplifying the integration. The general theory of integral
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equations with separable kernels is given in the mathematics text (ref. 6).
Generally, for radiation problems K will not be in a separable form.

However, it may be possible to find a separable function that closely

approximates K and can thus be substituted into the integral equation

to provide a simplification.
Bueldey (refs. 8 and 9) demonstrated that an especially useful form

for a separable kernel is an exponential function or series of exponential

functions. With this type of kernel, it is possible to change the integral

equation into a differential equation, and sometimes an analytical solution
can be obtained. This will be demonstrated in example 3-12. There is a

mathematical point that should be mentioned here. The process of chang-

ing the integral equation into a differential equation requires taking de-
rivatives of the approximate separable kernel. Even though the separable

function may approximate the exact kernel fairly well, the approximation
of the derivatives may become poor especially when higher derivatives
are taken. The use of the separable kernel will now be demonstrated

with an example.

EXAMPLg 3-12: Determine qo. 2/qz from equation (3-46a) by use of

an exponential approximate separable kernel (ref. 7).
The governing equation is

where

qo.2(E) f, qo.,('o) K(l___l)dn= 1 (3-54a)qz - 0 q2

K( - El) = 1- I?" +:'][7
113/2L

(3-54b)

The K(In -El) is plotted in figure 3-11, and it is reasonably well approxi-

mated by the function e -zl'_-_l. When the approximate kernel is sub-

stituted into equation (3-54a), the part of the function depending on E
can be taken out of the integral to give the result

q,,2(6)
q2

e-2effq°'2(_l) e2,d_l--e2_f_q°'2(TI)e-Znd_=lq2 qz
(3-55)

By differentiating equation (3-55) twice, the integrals can be removed
and the following differential equation obtained

[qo.z(_)]
_L'---_z j=_4

dp
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FIGURE3--11. --Exponential approximation to configuration factor kernel for cylindrical
enclosure.

This has the general solution, obtained by integrating twice,

qe. _ (_) =-- 2_ + C,_ + C2 (3-56a)
q2

To obtain C, and C2, two boundary conditions are needed. From sym-

metry one boundary condition is

d (q°'----21
\ qz / l

d_: =0 at _:=_

which yields C, = 2l. To determine C_.. a boundary condition can be ob-

tained from equation (3-55) by evaluating it at _:= 0 and _:= l and then

utilizing the fact that q,. 2(0) = qo. 2(1) to obtain the condition

fot q'''(_) e-" dTl=e-U fot q°'z(_) c:'d*lq.z qz

Inserting qo. :/q: = - 2_ _ + 21_ + C2 and integrating yield C2 = l + 1. With
C1 and Cz thus evaluated, the final result for qo..,./q., by the separable

kernel method is the parabola
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(Oqo,_
= l + 1 + 2 (_l - _) (3-56b)

q2

More generally, the boundary conditions to evaluate Ct and Cz could
have been obtained even in an asymmetric case by evaluating the

integral equation at both boundaries x = 0 and x= l. This yields from
equation (3-55)

qo, 2(0) fot qo.2(_) e_2, d¢l= 1_: q2

- e-" P _ e'' d,7 = 1
q2 Jo q.z

Then qo, 2/qz from equation (3-56a) is substituted into these two bound-
ary conditions. After integrating, two simultaneous equations result for

C1 and C2, leading to the same solution as before. The advantage of

previously using the symmetry condition was only algebraic simplicity.

3.4.2.3 Approximate solution by variational method.-As mentioned
in reference 6 (p. 495), an integral equation of the form

so(¢) = _ K(¢, ,_)so(_)dn + G(¢) (3-57)

can be solved by variational methods. A restriction is that K(_, :0) be

symmetric, that is, K is not changed when the values of ( and 77 are
interchanged. The kernel of equation (3-54b) is an example of a sym-

metric kernel since, because of the absolute value signs, it is evident
that K(I,7-_I ) =K(I_-_I ) .

The variational method depends on the use of an auxiliary function that

is related in a particular way to the integral equation given by equation
(3-57). This auxiliary function is given by

K(_, _)so(_)so(_)d_d_- f_ [so(C)]'@+2 f_

The significance of the J function is that, when the correct solution for

SO(_) is found, J will have a minimum value.

The procedure for obtaining an approximate solution is to let so(_) be
represented by a polynomial with unknown coe_cients,
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¢(_)-- _,o+ _,,_+-/,¢= +" • • + 3,._:" (_-59)

This polynomial is substituted into equation (3-58), and the integration
is carried out. If K is so complicated algebraically that the integration

cannot be performed analytically, the method is not practical. After the

integration is carried out, the result is an analytical expression for J as
a function of 3'0, yl, y_ ..... y.. These unknown coefficients are then

determined by differentiating J with respect to each of the individual
coefficients and setting each result equal to zero, that is, aJ/ayo=o,

aJ/a,y. = 0 ..... aJ/o3,,, = o. This yields a set of n+ 1 simultaneous

equations for the n+ 1 unknown coefficients. By differentiating J in
this manner and setting the differentials equal to zero, the coefficients are

found that make J a minimum value; thus the most accurate solution to
It

the integral equation of the assumed form ¢(x) = _ yjxJ is found.

This method has been applied for radiation in a cylindrical tube in
reference 7 and radiation between parallel plates of finite width and

infinite length in reference 12.

3.4.2.4 Approximate solution by Taylor series expansion.-The use
of a Taylor series expansion method for solving a radiation integral

equation was demonstrated in references 13 and 14. The physical idea
that motivates this method of solution is that the geometric configuration

factor can often decrease quite rapidly as the distance between the two
elements exchanging radiation is increased. This means that the radiative

heat balance at a given location may be significantly influenced only by
the radiative fluxes leaving other surface elements in the immediate

vicinity of that location.

As an example, consider the type of integral equation in equation

(3-54). The function of K(l_-_l) decreases rapidly as _-_ is in-
creased as shown in figure 3-11. Then, if it is assumed that the im-

portant values of _ are when T/ is close to the location 6, the function

qo.z(_)/qz is expanded in a Taylor series about _:

\q2/i , ('¢-s_) 2 \q2/| +qo,,(_) _ qo. 2(_) + (__ _:) ....

(3--6o)

The derivatives in the Taylor expansion are evaluated at _:and hence do

not contain the variable _. This means that, when equation (3-60) is

substituted into equation (3-54a), the derivatives can be taken out of
the integrals to yield
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q" J

,,.,2! ds_ -- -o • • • = 1 (2-...61)

The integrations are then carried out; if this cannot be done analytically,

the method is not of practical utility because it is as easy to carry out a
numerical solution of the exact integral equation as of equation (3-61).

If the integrals can be carried out analytically, equation (3-61) becomes a

differential equation for qo, z(sC)/q.,, which can be solved analytically or

numerically if the boundary conditions can be specified. The boundary
conditions can be derived as illustrated in reference 14 from the physical

constraints in the system; for example, symmetry or an overall heat
balance. This method is probably of little value for' enclosures involving
more than one or two surfaces.

In the past four sections, methods have been discussed for solving
single or sets of integral equations by numerical methods and by some

approximate analytical methods. The analytical methods are probably
of value only when the integral equations are relatively simple. In

almost all practical cases the numerical method would be resorted to.
There are a few instances where approximate or numerical solutions

are not required since the radiation exchange integral equation has an

exact analytical solution. One of these cases will now be discussed.

3.4.2.5 Exact solution of integral equation for radiation from a spher-

ical cavity.-The radiation from a spherical cavity, as shown in figure

3-12(a), was analyzed by Jensen (ref. 15), discussed by Jakob (ref. 3),
and further treated by Sparrow and Jonsson (ref. 16).

The spherical shape leads to a relatively simple integral equation

solution because there is an especially simple geometrical configuration
factor between elements on the inside of the spherical cavity. The con-

figuration factor between two differential elements dAj and dAk shown
in figure 3-12(b) is

dFdj-ak = cos El cos Be dAk (3-62)
ors 2

Since the sphere radius is normal to both elements d,4j and dAk, the

distance between these elements is given by
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y i'(,:iA_)

qo { _, (spherical cap

_._{t J I //J/ c_veringcavi_y

,-A 1

z

la)

(b)

(a) Spherical cavity with diffuse entering radiation q, and with surface at uniform

temperature 7',.

(b) Area elements on spherical surface.

FIGURE 3--12.-Geometry involved in radiation within spherical cavity.
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S = 2R cos/3j = 2R cos/3_

Then equation (3-62) becomes

d_k

dFd¢- _k = 47rR "- (3-63)

If, instead of an infinitesimal area d.4k, the element d.,4j exchanges with
the finite area Au, then equation (3-63) becomes
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Fdj_k_4___f 4 (L,lk_ Ak_ 4erR-------_ (3-64)
}

Equation (3-64) is independent of the area element dA_; hence, d,4_

could be replaced by a finite area Aj so that

Ak Ak

Fj_k = 4erR------_ = A--'_ (3--65)

where ,4, is the surface area of the entire sphere.

Consider the spherical cavity shown in figure 3-12(a). The cavity

surface has a temperature distribution T_(dAt) and has a total surface

area A,. The spherical cap that would cover the cavity opening has an
area A_. Assume there is diffuse radiative flux qe (per unit area of Az)

entering from the environment through the cavity opening. The qe can
be variable over A2. It is desired to compute the radiation intensity

i'(d,4*) leaving the cavity opening at a specified location and in a speci-
fied direction, as shown by the arrow in figure 3-12(a). The figure shows

that the desired intensity will result from the flux leaving the element

d,'l_' and will equal qo. t(dA_*)/cr where the factor lr arises from the re-

lation between hemispherical flux qo and! intensity i '. The flux qo. _(dg _')

can be found by applying equation (3-43a)

qo, ,(dA*)- (1 -el) fA ' q,.
l(d_ t)dFdl.-dl

-- (1 -- et) f qe(dA2)dF_..-,,_ $1o-T14(d_ !*) (3-66)
JA $

The F factors from equation (3-63) are then substituted to give

1--EI fAqo. t(dA*_)- 4erR-------_ , qo. _(dAt)dg,

l--e! f q_(dA_)dA.,. + e,o.T_(dA *) (3-67)

where the known quantities are grouped on the right side of the equation.

To solve equation (3-67), a trial solution of the form

qo, t(dA*)---f(dA*) + C

is assumed, where f is an unknown function of the location of d,4* and

C is a constant. Substituting into equation (3-67) gives

!
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- 1--El f 1--eiCAt
f(d,4 _')+ C"-4---_-_ Ja, f(dA l)d.4t-_

1-et [
=4---_T j _" qe(dAz)dA_ + Elo'T_IdA*)

The only two terms that are functions of local position within the cavity

are the first and last which gives f(d.,4*)= elo'T_(d.,4*). The remaining

terms are then equated to determine C. This gives the result for qo. t(dA*)

qo. x(dA*) = Elo'T_(dA _)

1 -- El

1 (1- e0,4_
4,rrR *

The desired solution is r (d,41 )- qo. _(d.4*)/_r.

(3-68)

3.5 CONCLUDING REMARKS

In this chapter, methods were developed for treatment of the energy
exchange within enclosures having diffuse-gray surfaces; the surfaces
can be of fimte or infinitesimal size. The surfaces can have a specified
net energy flux added to them by some external means, can have a

specified surface temperature, or can be subjected to some combination
of these conditions. A number of methods were presented for solution of
the integral equations that resulted from the general formulation of

these interchange problems. It was pointed out that most practical prob-

lems become so complex that only numerical techniques can successfully
be used for the solution of the governing equations.

In succeeding chapters, extensions of the present procedures to
nonidealized surfaces are made, and methods for incorporating coupled

conduction and convection of energy will be introduced.
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Chapter 4. Radiation in Enclosures Having Some

Specularly Reflecting Surfaces

4.1 INTRODUCTION

In chapter 3 all the surfaces considered were assumed to be diffuse

emitters and diffuse reflectors. In this chapter the surface characteris-
tics of some of the surfaces will be changed. All of the surfaces are still

assumed to emit in a diffuse fashion. Some of the surfaces in an enclosure

will he assumed to reflect diffusely, as before. The remaining surfaces

will be assumed to be specular; that is, they will reflect in a mirrorlike

manner.
When reflection is diffuse, the directional history of the incident

radiation is lost upon reflection: the reflected energy has the same direc-
tional distribution as if it had been absorbed and then diffusely reemitted.

With a specular reflection, the reflection angle relative to the surface

normal is equal in magnitude to the angle of incidence. Hence, in contrast
to diffuse behavior the directional history of the incident radiation is not

lost upon reflection. Consequently, when dealing with specular surfaces,

it will be necessary to account for the directional paths that the reflected
radiation follows between surfaces.

The specular reflectivities used in this chapter are assumed inde-

pendent of incident angle of radiation; that is, the same fraction of the
incident energy is reflected, regardless of the angle of incidence of the

energy. In addition, all the surfaces are assumed to have gray properties;
that is, the properties do not depend on wavelength.

A

cp
D

d
F

L

N

Q
q
T
V

X, _g

4.2 SYMBOLS

area

specific heat
tube diameter

number of diffuse surfaces

configuration factor

length of enclosure side
total number of surfaces

energy rate; energy per unit time
energy flux; energy per unit area and per unit time
absolute temperature
volume

position coordinates
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a absorptivity
( emissivity

p reflectivity

pM density of material
o" Stefan-Bohzmann constant

7" time

Subscripts:

emitted
final

initial

incoming

jt_ or k ta surface
outgoing
specular
surface 1 or 2

Superscripts:

s total specular exchange factor including all paths for specular

interreflections plus direct exchange
" bidirectlonal value

* denotes a second portion of area on same surface

e

F

I

i

j,k
o

8

1,2

4.3 RADIATION BETWEEN PAIRS OF SURFACES WITH SPECULAR
REFLECTIONS

4.3.1 Some Simple Cases

As an introduction, consider radiation exchange for some simple

geometries: infinite parallel plates, concentric cylinders, and concentric
spheres as shown in figure 4-1. Specular radiation exchange in these
cases is well understood, having been discussed by Christiansen (ref. 1)

and Saunders (ref. 2) some years ago. Because the radiative exchange

process is easy to grasp for these cases, let us examine it at some length.
Consider radiation between two infinite gray parallel specular plates as

shown in figure 4-1(a). ALl emitted and reflected radiation leaving
surface 1 will reach surface 2 directly; simLlarly, all emitted and reflected

radiation leaving surface 2 will reach surface 1 directly. This will be
true whether the surfaces are specular or diffuse. Hence, for the specular

case equation (3-10) also applies, and the net heat transfer from surface 1
and surface 2 is

A,_(T'_- T_)
Q1f-Q_= 1 1

_,(T,) _(T_)

(4-1)



ENCLOSURE WITH SPECULAR SURFACES

%

m

°i

111

o

m

o_

u

.=

c_

N

o

I



112 THERMAL RADIATION HEAT TRANSFER

Now consider radiation between the concentric cylinders or spheres

shown in figures 4-1(b) and (c). Typical radiation paths for specular

exchange are shown in figure 4-1(d). As shown by path (a) all the radia-

tion emitted by surface 1 will directly reach 2. A portion will be reflected

from surface 2 back to 1, and a portion of this will be re-reflected from

surface l. This sequence of reflections between the surfaces continues

until an insignificant amount of energy remains because the radiation has

become partially absorbed on each contact with a surface. From the

symmetry of the concentric geometry and the equal magnitudes of

incidence and reflection angles for specular reflections, none of the

radiation following path (a) can ever be reflected directly from a position
on surface 2 to another element on surface 2. Thus the radiation exchange

process for radiation emitted from surface 1 is the same as though the two

concentric surfaces were infinite parallel plates. However, the radiation

emitted from the outer surface 2 can travel along either of two types of

paths (b) or (c) as sl_own in figure 4-1(d). The fraction Fz-2 will follow

paths of type (c). From the geometry of specular reflections these rays

will always be reflected along surface 2 with none ever reaching 1. The

fraction Fz-t will be reflected back and forth between the surfaces along

path (b) in the same fashion as radiation emitted from surface 1. The

amount of radiation following this type of path is

Aze,F.,.__o.T 4= A.,.o(A ,/A.,)crT _= A ,e_o"T 4

{the configuration factor F..,-I =A_/A.,. has been employed). The fraction

of the radiation leaving 2 that impinges on 1 thus depends on area At

and not on A2. Hence, for specular surfaces the exchange behaves as if

both surfaces were equal portions of infinite parallel plates equal in size

to the area of the inner body. The net heat transfer from surface 1 to

surface 2 is then given by equation (4-1).

EXAMPLE 4--1: A spherical vacuum bottle consists of two silvered

concentric glass spheres, the inner being 6 inches in diameter and the

evacuated gap between the spheres being ¼ inch. The emissivity of the

silver coating is 0.02. If hot coffee at 200 ° F is in the bottle and the out-

side temperature is 70 ° F, what is the radiative heat leakage out of the

bottle?

Equation (4-1) will apply for concentric specular spheres. For the

small rate of heat leakage expected, it is assumed that the surfaces will

be close to 200 ° and 70° F. This gives
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m_-

¢r 0.173 x 10-s(660 _--530")
= 1.52 Btu/hr

1 1
0.0----=+ 1

(If, instead of using the specular formulation, both surfaces had been

assumed diffuse, then equation (3-14) would be applied. The denominator

of the Q, equation becomes

_ _.z(_-I+A, 1 1) = 10--.-.-._+\6--_o/f6'_'/1\_.0..2_1)=91.8

instead of 99, as in the specular case. For diffuse surfaces the heat loss

would be 1.64 Btu/hr.)

EXAMPLE 4--2: For the previous example, how long will it take for the
coffee to cool from 200 ° to 120_ F if the heat loss is only by radiation?

The heat capacity of the coffee is p._VcpTl. Assuming the coffee is al-

ways well enough mixed so that it is at uniform temperature, the cooling
rate will be equal to the instantaneous loss by radiation. The loss of

energy by radiation at any time _', given by equation (4--1), is related to
the loss of internal energy of the coffee by

, dT, A,o-[T_O')-- T_]

!+1_ 1
E1 E2

The approximations have been made that surface 1 is at the coffee tem-

perature and surface 2 is at the outside environment temperature. Then

_fr,-r. dT_ .4,0" f"_-- &.

Jr,-r, T_':'T¢ p.Vcp(l+l_l)_O
\E, E2

where T: and Tr are the initial and final temperatures of the coffee and

et and e2 are assumed independent of temperature. Carrying out the

integration gives

I 1 , A,=
p_Vc,(l+l-1)

\Et E2

Then the cooling time from T! to T_- is
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1 (tan-' Tr 1 TIIn g--t..-

1 /A1 _

Substituting the values pw=62.4 lb/ft 3, V= _ _" _) ft", c.=
1 Btu/(lb)(_"),

clfE2ffi0.02,Al _1r ft 2, (r=0.173 X 10 -e Btu/(hr)(ft2)(°R4), T_-- 530 ° R,

T!=660 ° R, and T_=580 ° R gives the cooling time as 1"=380 hr.

The coffee will stay hot for about 16 days if heat losses occur only by

radiation. Conduction losses through the bottle neck usually cause the

cooling rate to be much higher.

Equation (4-1) applies for infinite parallel plates, infinitely long

TABLE 4,-I. -- RADIANT INTERCHANGE BETWEEN SOME SIMPLY ARRANGED SURFACES

Geometry

Infinite l_r411el
dates

Infinitely long
concentric

cylinders

i Concentrk:
spheres

Conflgur_lon

$

A2

"i

Surf_e type

A1 or AZ, either

specular or
diffuse

A1, specular or diffuse

A2, diffuse

A1, specular or diffuse

A2, specular

!A1. specular ordlffuse

A2, diffuse

A1, specular or diffuse

A2, specular

2+i-i
_I 'f2

2+i-i

1 ÷A1 1

2+2-i

I + A1 1)
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concentric cylinders, and concentric spheres when both surfaces are

specular. For infinite parallel plates, it also applies when both surfaces

are diffuse or when one surface is diffuse and the other specular. For

cylinders and spheres, equation (4-1) still applies if the surface of the

inner body (surface 1) is diffuse as long as the outer body (surface 2)

remains specular. This is because all radiation leaving surface 1 will go

directly to 2 regardless of whether 1 is specular or diffuse. When surface 2

is diffuse, equation (3-14) applies and may be used when surface 1 is

either specular or diffuse. The relations are summarized in table 4-I.

4.3,.2 Energy Exchange Between Specular Surfaces

4.3.2.1 Ray tracing and the construction of images.- When mirrorlike

reflections occur in enclosures, the well-developed procedures of

geometric optics can be applied to simplify both the concepts and the

mathematics of the radiative exchange process. The basic ideas are

outlined in this section. More advanced ideas may be found in references

3 and 4.

An incident ray striking a specular surface is reflected in a sym-
metric fashion about the surface normal so that the angle of reflection is

equal in magnitude to the angle of incidence. This fact is used to formu-

late the concept of images. An image is simply an apparent point of

origin for an observed ray. For example, in figure 4-2(a), an observer

views an object in a mirror. To the observer, the object appears to be

behind the mirror in the position shown by the dotted object. This

apparent object is called the image.

This procedure is readily extended to cases where a series of reflections

occurs, as shown in figure 4-2(b).

To this point, it has been assumed that the mirrors in the system do

nothing except change the direction of the rays originating at the source.
In the formulation of thermal radiation problems, the specular surfaces

will, in genera], have a nonzero reflectivity. They will thus attenuate the

energy of the rays from an object.

In addition to reflecting energy, the mirrors can emit energy. This

emission can be conveniently analyzed with an image system rather than

with the real mirror system. In the image system, all radiation acts along

straight lines without the complexity of considering directional changes at

each reflecting surface. The attenuation at each surface is accounted for

by multiplying the intensity of the ray by the specular reflectivity at each

reflection. The emission from three surfaces is illustrated in figure

4-2(c). For example, emitted energy reaching the viewer from surface 3

is considered to be coming directly from the image of 3, with attenuation

due to reflections at 2 and 1 because of passage through these surfaces

or their images.
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surface r-"-

a Object

(a)

Specular
surface I Imageof 2 Imageof 3

\ \ l.._/t_ Imageof

\ -7"t3

111_ Object

Specular_ _ _3(_Specular

surface 2 _ _ _ surface 3

(b)

Emission
from 1"_

Emission Emissionfrom
from 2-, 3 to observer--,

Image
of 3

(c)

(a) Image formed by single reflection.

(b) Image formed by multiple reflections.
(c) Contributions due to emission from specular surfaces.

FIGURE 4,-2.--Ray tracing and images formed by specular reflections.
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In some geometries, a ray may undergo multiple reflections from

various surfaces before reaching the observer. An example of this is

the "barber-chair" geometry, where mirrors are present on opposite
walls of the barber shop. In this case, if the mirrors are parallel, an

infinite number of reflections of a ray can occur, and a person receiving a

haircut can view an infinite number of images of himself (if the mirrors

are perfect, i.e., if p,- 1).
4.3.2.2 Energy exchange between simple specular surfaces.-As an

introduction to the radiation exchange in an enclosure having some

surfaces that are specularly reflecting, a few examples will be considered

for plane surfaces. The examples will further demonstrate the new
features that enter when mirrorlike surfaces are present.

The emission from all surfaces is assumed diffuse. This is a fairly

good assumption in most cases, as can be shown by the electromagnetic

theory predictions of the emissivity of specular surfaces (fig. 4-5,
Vol. I).

Figure 4--3(a) shows a diffusely reflecting plane surface .41 facing a

specularly reflecting plane surface A2. Surface 1 cannot view itself; the
configuration factor from any part of ,41 to any other part of .41 is thus

zero. However, if A_ is specular, then A1 can view its image, and a path

exists by means of a reflection from the specular surface A: for radiation
to travel from the differential area dAl to d.4*. By looking at the diagram

in figure 4--3(a), it is evident by the ray tracing techniques that the radia-
tion arriving at d.,4_' from d,4_ appears to come from the image d.4_(2).

Thus, the geometric configuration factor between dzh and dA_* resulting
from one reflection can be obtained as dF_(2__,q-. The subscript notation

refers to a factor from the image of d.4_ (as seen in .42) to d,4_*.

There are points of similarity that should be noted when comparing
the specular and diffuse cases. When A! and A2 in figure 4-3(a) are both

diffuse reflectors, radiation from dAl is received at d,4_' by means of
diffuse reflection from A2. Since the reflected energy is diffuse, it can be

considered together with the emitted energy from A2, which is also

diffuse, the sum being the outgoing flux qo.2 as discussed in chapter 3.

If, however, the exchange between d.A_ and dA* by means of diffuse
reflection at A: is examined separately from the emitted energy, it is

governed by Fd_-_ and then dF2-_. (keeping in mind the uniform flux

restrictions that are necessary in using configuration factors). The portion
of the emitted energy d_Qe, ,,x-_1"_2_from dAl that reaches dA_*after one

reflection from _42is the following, for the two cases of diffuse and specu-

lar A2, respectively:
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(b) Radiation from differential area to
finite area by means of one intermediate

specular reflection.

(d) Radiation from dA1 can reach only

portion of Al by means of specular
reflection from Az.

FIGURE 4--3. --Radiation between a diffuse surface and itself by means of a specular surface.

dZQ,. at-at"(2)= (dH,e,o'T_)Fal - "-mdF2-al.

dZQ¢. dl-at'( I) = (dA le,o"T_)p,, 2dF att2)-al "

This reveals that, for p_-=p,.2, the difference in the two exchanges is

incorporated in the configuration factors for reflected radiation. The
difference in the factors results from the nature of the reflection being

considered, whieh is a purely geometric effect.
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Figure 4-3(b) describes the emitted radiation from dd_ that reaches

the entire area ,41 by means of one specular reflection. The reflected

radiation appears to originate by diffuse emission from the image ddtt2).
Thus the geometric configuration factor involved from d.,4_ to A_ is Fdt¢2_-_.

Figure 4-3(c) shows several typical rays leaving ,4t that are reflected

back to dl. These rays appear to originate from the image AI_). The

configuration factor from A_ back to itself by means of one specular

reflection is then Ft_2_-l. In this instance, all of the image At_2_is visible

in As from any position on A_. In some instances, this will not be true.
An example is shown in figure 4-3(d). The radiation from d,4t has to be

within the limited range of solid angle shown shaded in order that

the radiation be reflected back to A_. The geometric configuration
factor between dr1 and A_ is still Faaz_-_, but this factor is evaluated

only over the portion of AI that receives reflected rays. F,n_z_-_ is the

factor by which ddl_2_ views AI, and it must be kept in mind that the view
may be a partial one. This factor will have a different value as the

location of rid1 along At is changed. The fact that the view between

dd_ and ,4_ varies with the position of d,4_ along A_ means that the

energy from ,4_ that is reflected back to A_ will have a nonuniform
distribution along ,4_. The reflection of some of this energy from At

will provide a nonuniform qo from A_, which violates the assumption in

the enclosure theory of uniform qo from each surface. When partial

images are present, caution should be exercised in subdividing the
enclosure area into sufficiently smaU portions so that the accuracy of

the solution is adequate.

Now consider the geometry involved when there are two or more
specular surfaces involved in the radiation exchange. This will lead to

multiple reflections and many different paths by which radiation can
travel between surfaces. At each reflection, the radiation is modified by

the p, of the reflecting surface. At present in this discussion, only the

geometry is being considered; the p, factors will be included later when
heat balances are formulated.

In figure 4-4 are shown two specular surfaces. Energy is being

emitted from ,4z and is traveling to surface A_. The fraction arriving

at dd_ is given by the geometric configuration factor dFz-al. This direct

path is illustrated in figure 4-4(a). A portion of the energy intercepted

by AI will be reflected back to As and then reflected back again to
A_. Hence, ,4z not only views dd_ directly but also by means of an image

formed by two reflections. This image is constructed in figure 4-4(b).
First the reflected image A_2_ of d_ reflected in As is drawn. Then ,42

is reflected into this image to form Aa_-2_. The notation Aa_-2_ is read

as the image of area 2 formed by reflections in area 1 and area 2 (in that

order). The radiation paths and the shaded area shown in figure 4-4(b)
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A2,
specular

dA1

(a}

A1(21

\ //

/

AZ' specular_l i

specular ;,_Y V !

dAl

(b)

A211"2_ A1(2_1_2_

utar dA1
(¢)

(a) Energy emitted from Al that (b) Energy emitted from/h that reaches dAi after

directly reaches d,4,. two reflections.
(c) None of energy emitted by ,4_ reaches rid, by means of four reflections.

FIGUmg 4-4.--Radiant interchange between two specular reflecting surfaces.

reveal that the solid angle within which radiation leaving A2 will reach

ddt by means of two reflections is the same as the solid angle by which

dd_ views the image Aa_-z). Thus, the configuration factor involved for

two reflections is dFa_-_)-_t. This is read as the factor from the image of

surface 2 formed by reflections in surfaces 1 and 2 (in that order) to area
element all.
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Consider the possibility of additional images. The geometric factor
involved is always found by viewing d.41 from the appropriate reflected

image of,42 as seen through the surface A2 and aLl intermediate images.

In the case of figure 4-4(c), the image of A2 after four reflections

`4at-2-1-2) cannot view d`41 by looking through `4_. Hence, there is no

radiation leaving As that reaches d,41 by means of four reflections, and

no additional images need be considered.

EXAMPLE 4--3: An infinitely long groove as shown in figure 4-5 has

specularly reflecting sides that emit diffusely. What fraction of the

emitted energy from `42 reaches the black receiver surface element dAa?

Express the result in terms of diffuse geometric configuration factors.
Consider first the energy that reaches d.A_ directly from `42 and by

means of an even number of reflections. The fraction of emitted radiation

that reaches d`43 directly from A_ is dF2-_, as illustrated in figure 4-5(a).

A second portion will be emitted from .42 to `41, reflected back to As,

and then reflected to d`43. From the diagram of images in figure 4-5(b),

only part of the reflected image `4a1-_) can be viewed by d`43 through
`42. The fraction of emitted energy reaching d.43 by this path is the con-

figuration factor evaluated only over the part of `42(_-2) visible to dd3
multiplied by the two specular refleciivities, p,. _p,, 2 dF_(1-2_-da. This is

not an ordinary view factor, but it takes into account the view through the
image system. In a similar fashion, there will be a contribution after two

reflections from each of A_ and A2. This is illustrated by the shaded solid

angle in figure 4-5(c). The third image of Az, A2(_-2-_-2-1-2) cannot be

viewed by dA_ through A_; hence, it will not make a contribution. Also,
the third image of A_ cannot view AI through A2; consequently, there will

be no additional images of A2. The fraction of energy emitted by Az that
reaches dd_ both directly and by means of the images of A_ is then

dF_-cs + p,. lp,. 2dFaz-2)-aa + p2. ip_, 2 dF_(1-2-_-2)-aa

Now consider the energy fraction that will reach d.da from Az by means

of an odd number of reflections. Using figure 4-5(d) and arguments
similar to those for an even number of reflections results in

The first two of the F factors are only evaluated over the portions of the
images that can be viewed by dAa.

The fraction of energy emitted by surface A_ that reaches dda directly
and after all interreflections from both A_ and A_ is then
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FIGURE 4--5.--Radiation from one side of specu|arly reflecting groove to differential strip

receiving area outside groove opening.
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figure 4--6(a), and the reciprocity relations for diffuse configuration
factors.

A second type of reciprocity relation exists for specular surface

configuration factors. To derive this relation, examine the energy ex-

change between two surfaces At and Az contained within an isothermal

enclosure. If both surfaces are specular, then the image system shown

in figure 4---6{b) can be constructed for the case of radiation from 2 to 1

by means of a refection at 1 and at 2. For any such system, an analogous

system can be constructed in which a plate with an aperture is sub-

stituted for the restraints on the ray paths that are present, as is done

in figure 4_-6(c). The aperture is placed to allow passage of only those

rays that pass through the image system by which AI can view at least

a portion of A2,-2) through A2 and A,(2).

The emitted energy leaving specular surface A2 in the analog system

and absorbed by A_ is

Q2¢I-t}-., : Qe, 2ps, Ip.. 2F'..-2)-,al

: A2{1-z){2(rT4ps. xps, 2Fm-:)-i_ (4-5)

The reflectivities account for the reduction in energy by the two inter-

mediate specular reflections. F.,,-z)-i is the diffuse surface configu-

ration factor computed for the constrained paths passing through the

aperture (see example 4-4). Since these paths are exactly those through

the image system, this is also the specular configuration factor. Sim-

ilarly, the energy along the reverse path is

QI_2(1-2) : A iEIo'T4ps, 2ps, 1FI-2<l-2)_z (4-6)

Equating the energy exchanges in either direction between A, and

A2(.-2) for the isothermal enclosure results in the following reciprocity
relation:

A IFI-2.-_} = A2.-2_F2_l-2)-x = A.,F2.-2)-I (4-7)

By generalizing for many intermediate reflections from surfaces ,4, B,

C, D, and so forth, equation (4-7) can be written as

,4 ,F___s_s-c-o ...)= A zF_s-s-c-o ...)-, (4-8)

EXAMPLE 4-4: A black surface A, faces a smaller parallel mirror

,42 as in figure 4-7. Compute the configurationfactor F_-ta) between

,4t and the image of ,41formed by means of one specular refection in
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, tp' '_-A2, specular reflector I
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AI( _ I

I
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dA1J
AI(2) I

I
(b|

£
dA1-/
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(a) Portion of Aim in view from d.41 through entire A:.

(b) Limiting x for portion of AI(:) to be in view through entire A:.

(c) Portion of At(=) in view through part of A=.

FIcu_ 4,-7.-Configuration factor computation involving partial views of surface and
image (example 4-4).



ENCLOSURE WITH SPECULAR SURFACES 127

A2. The surfaces are infinitely long in the direction normal to the plane
of the drawing.

computed from the integral Ft -,(.*)= ( 1�A l)]. Fal- t(z)d,41.The factor is
dA 1

Consider the element d.4, at location x on A,. The configuration factor
for radiation from dAt to the portion of A,(z_ in view through Az is (see

example 2-4)

,,, 1[ x+a x-a]Fat-l(2)=l (sin _o'- sin _o )=_ L._/(x'_-'_-2+b2

This is valid until position x=l-2a is reached (fig. 4-7). For larger
x values the geometry is as shown in figure 4-7(c). Then

1 _o'- _o") I[-V, x+/ x--a ]Fdt-t(2)=_ (sin sin =_ (x+l)2+4b 2 _(x_a)_+bZ

The desired configuration factor is then

F,-,(2)=_2fotFa_-t(2)dx

I fo,-',r. x-o
1 l x-a

LV (xTT) +4/: V(x-a)2+b;]

The integrations are carried out, and the results simplify to

Ft-,(z)-= _ + (b)Z- ? (1 -/)2 + (b) 2

Consider a case where there are two or more specular surfaces in

an isothermal enclosure at temperature T. For simplicity, an enclosure,

such as figure 4-6(d), shall be discussed where there are two specular
and two black surfaces. If the heat exchange between the two black
surfaces is considered by direct exchange and all specular reflection

paths, the following relation results:

= A t[Ft-z + p,, _b"t(3_-z+ p,, ._Ft(,)-2

+P,, aP,,o¢'1(_-,.-=+ " " "+P_.aP'_,._;'I_3.-_)-= +" " "] (4-9a)
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------ Az [F2-1 + P,. :_',(a)-i + p,..,F.,(4)- _+ p,. 3p,. _F_(4-a)-i

+" " "+ PP.aP'_.4F2(4--3m-t "1"" • "] (4-9b)

The shorthand notation (3"-4") means m reflections in 3 and n in 4.

Equation (4-9) can also be written as

Q'-........A_=Q"-......._I=_r, =at, _4-10)
o.T4 o.T4 ,'_lr t-= "_ _-t

where F s is an exchange factor equal to the quantity in parentheses in

equation (4-9).

Now look at equation (4-9) in more detail. Since AtFL-2=A.:F.,-, and

from equation (4-4) for one reflection

AIFt(a)_2fA.,F.,(s)_t and AIF,(_)-2= A2F2(4)-I

the equalityin equation (4-9) reduces to

•41 [p,. sP,. 4Fl(3-4)-zA- " " " "t- psm.3ps_.4Fl,a"-4")-2 -{'" " "]

= A,,[ps. 3ps. 4F_4-s)-_ +" • "+ p_._p'J. 4F2(_.-a-_-t +" " "] (4-11)

Dividing by ps. ap,., results in

A_ [F_(3_r-2 +" • • + p_'_p_':_ F _3--_._-_ +" • • ]

=A..,[F.,(4-3)-x +" • • + p_,'_p'_;_F2_4.-3-)-i +" • "] (4-12)

This equality must hold in the limit as p,, 3 and p,. 4 approach zero so that

A iF,(-_-4)-z = A.,F.,_4-s)-, (4-13)

which is a geometric property of the system. A continuation of this

reasoning leads to the general reciprocity relation

A, F,A-a-c-o . . .)-2 = A2F.,.(. . . t)-c-e-a)-_ (4-14)

Note that combining equations (4-8) and (4-14) results in the identity

AtF,(A-S-c-o . . .)-_ = A._F.,.c . . O-C-S-At-, = A,F_-z(a-A-c-o . . .) {4-15)

or
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Ft(A-B-c-o . . .)-2 = Ft-2(A-B-c-o . . .) (4-16)

This latter relation can also be deduced directly from the fact that an

image system can be constructed either starting with the real surface 1

and working toward image 2(A-B-C-D...), or starting with

image I(A--B-C--D . . .) and working toward real surface 2; in
either system, the geometry of the construction will be identical. Thus,

the configuratiorr factors between the initial surface and the final surface
must be the same.

4.4 NET RADIATION METHOD IN ENCLOSURESHAVING SPECULAR AND
DIFFUSESURFACES

4.4.1EnclosuresWith Plane Surfaces

In this section, the radiation exchange in an enclosure composed of
specularly and diffusely reflecting surfaces will be considered. As an

introduction to enclosure theory when specular surfaces are present,
consider an enclosure composed of three plane surfaces at different

uniform specified temperatures as shown in figure 4-8(a). Later, the
boundary condition of specified heat flux will be considered. All the
surfaces are diffuse emitters, but two are diffuse reflectors while the

third reflects specularly. For simplicity, it is assumed that the enclosure
is sufficiently long that the effect of the ends can be neglected.

In applying the net radiation method, the heat balance equations
(eqs. (3-1) and (3-2)) do not depend on the type of reflection occurring

and, hence, will apply for both diffuse and specular surfaces. Then for
all three surfaces of the enclosure

Q_=q_Ak = (qo, k--qi.k)dk k=l, 2, 3 (4--17)

qo._=E_rT_+(1--_k)qi, k k= 1, 2, 3 (_-18)

There is a difference in interpretation of qo when the surface is specular.
For a diffuse reflector, both emitted and reflected intensities are uniform

over all directions; hence, ¢o'T _ and (1- _)qj have the same directional
character and the diffuse configuration factors can be applied for both

of these quantities. For a specular reflector, however, the (1-_)qj term
will have a directional distribution different from that of the diffuse emis-

sion Eo'T 4. Thus, when surface k is specular, the specular portion of qo. k

will have to be treated differently than the diffuse portion.
Now the equations for qi, k for specular surfaces in the enclosure will

be derived that are comparable to equation (3-3) or (3-5). Refer to
figure 4--8(a); the energy arriving at surface 1 comes directly from the
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FIGURE 4-8.-Enclosure having one specular reflecting surface and two surfaces that are

diffuse reflectors.

diffuse surfaces 2 and 3 without any intermediate specular reflections.

Hence, equation (3-5) applies

q_, z= Fi-2qo, 2+ Fl-sqo, 3 (4-19)
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For surface 2, the incoming radiation is composed of four parts which

originate as shown in figure 4-8(b). The first is the diffuse term for energy

originating from A3, and going directly to Az which is qo. 3A3F3-2. The

remaining three parts arrive by means of A, and consist of a diffuse

emitted portion e,o'TtAiF,-z plus two reflected specular portions. The

specular portions arise from the energy leaving A2 and Aa that is specu-

laxly reflected to A2 and will appear to come from the images A2(,_ and

A3(t) in figure 4--8(a). The specular portions are equal to

qo.2p,. lA2F2(_)-2 + qo.3pJ. IA:_3(1)-':'

Note that multiple reflections cannot occur when only one planar specu-

lax surface is present. The sum of the terms for the incoming radiation

to surface 2 is then

A=qj. _ = e,trT_A,FI__ + qo, 2p,, _A2F2(I)-2 + qo. _4_F__2 + qo. _p,. 1AaF_I)-2

After applying configuration factor reciprocity (eqs. (2-25) and (4-8)),

this can be regrouped into the form

qi, 2= e,o'T_F2-, + qo. 2p,. ,Fz-2(,)+ qo, 3[F2-_ + p,, iF_-_l)] (4-20)

Similarly, for surface 3

ql. s = elo'T_F3-, + qo,2[Fa-= + p., IF3-,(,)] + qo._,p,. ,F3-3(1) (4-21)

Equations (4--20) and (4-21) axe two simultaneous equations involving

the unknowns qo. _ and qo, 2. If q_, 2 and qj, 3 are eliminated by use of

equation (4-18), there is obtained

qo. 2 - ezo'T._ = e_o'T|F.___ + qo, 2ps, _F2-2(,) + qo. a [F2-_ + p,. ,F.,-3(,)]

qo. 3 - ¢=o'T] = e, trT_F3-, + qo, 2 [F3-_ + p,, ,F___(,)] + qo. _p,. ,F___,)
1 --e_

After rearrangement, this yields

qo._[1 --p,., (l -- e:z)F_-_(,)] -- qo,a( 1 -- e_) [F.,_:_ +p.. ,F2-:_,)]

= e, (1 -- e.,)F,_,(rT_ + e.,<rT! (4-22)
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--qo.=(1--e3)[F3-=+ p,._F.a-,,_,)]+ qo,3[I- p,.1(I- _._)F:_-_I)]

(4.-23)

Equations(4,-22)and (4--23)can be solvedforqo.2 and qo._interms

of known quantities.After qo._and qo.3are found, they are used in

equations(4,--19),(4--20),and (4,-21)to findthe qifor each surface

and then equation(4-18) isused tofindqo.I.Equation (4--17)isthen

employed todeterminetheQ foreach surface,which isthe heataddition

requiredto maintainthe surfacesattheirspecifiedtemperatures,or in

other words, is the net radiativeheat lostfrom each surface.Equa-

tions(4--22)and (4--23)are analogousto the system of equationsfor

diffusesurfacesgivenby equation(3--21).

EXAMPLE 4,-5:An enclosureismade up of threesidesas shown in

figure4--8(c).The lengthL issufficientlylong so that the triangular

ends can be neglectedin the radiativeheat balances.Two of the sur-

faces are black,and the thirdis a gray diffuseemitterof emissivity

_i= 0.05.What isthe heatadded per footof lengthto each surfacefor

each ofthe two cases:(I)area1 isa diffusereflectorand (2)area I isa

specularreflector?

The configurationfactors are computed first.From symmetry

Ft-==Fi-3. Also F__2+FI_3=I, so thatFt_2--F__3=I/2. From reci-

procity F._-t=AIFI-2/A2=V_/2fFz-I. Now F.,_l+F.,._3=l.Hence

F',-3 : 1 -- X/2/2 : F3-z = F',.-zu_= F3-:i(o. Finally, F_-m): F_-3(l):

"1 --F__=--F__=t,: X/2-- 1.

For case (1), apply equation (3-18) to obtain

Q_ 1 = (500)__1 (500)4_1 (1000)4o-'v 0.05

0, V (1-0.05). 0., -x/22 0.05 1- (1000 ,

_ 0_..2_,V (1-0.05) -X/21500 ,_(I__ )ISOOV+tlOOO),
o"C2 2 0.05 o'(1)-- 2

The solution of these three equations yields the Q's per foot of enclosure

length as Qt=-57 Btu/hr, Q2 =- 1018 Btu/hr, and Q3= 1075 Btu/hr.

The heat supplied to A_ is removed from A_ and A=. The amount removed
from At is small because At is a poor absorber.

For case (2) apply equations (4-22) and (4-23) to compute qo.= and

qo, a. Since _._= _._= 1, these equations yield simply qo, _= o'T_ and
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qo. a = o'T1 which would be expected for the outgoing fluxes from black

surfaces. Then equations (4-19), (4-20), and (4-21) yield the qj for each
surface as

q,.__Z,=l 1o- 2 (5OO),+ (lOO0),

q"'=0.05(500)4 V_ (..___)o" --_-+ (500)4(1--0.05) 1--

cr -_- + (500)' I-- + (I--0.05) ('v/2--l)

.+(1000)'(1--0.05) (1 ---_-)

Equation (4-18) gives qo., as

_2= 0.05(500)4 + (I--0.05) ll (500)4+l (I000)4]

With qt and q, known for each of the surfaces, equation (4-17) is applied

to find Q. This yields per foot of enclosure length Q, =-57 Btu/hr,

Q,--- 1113 Btu/hr, and Qa-- I170 Btu/hr.

Comparing cases (1) and (2) reveals that, by making At specular, the

heat transferred from A3 to A, is increased from 1018 to 1113 Btu/hr or

an increase of 10 percent.

There are some general ideas that should be emphasized with regard

to example 4-5. Look first at equations (4-20) and (4-21). The qt. 2 and

qi, n for the two diffuse surfaces are expressed in terms of the diffuse

quantities, etcrT1, q°, z, and q°. a where Elo'T_ is the diffuse portion of the

outgoing energy from the specular surface ,41. The energy reflected

from the specular surface enters equations (6-20) and (4-21) only

through the geometric configuration factors. As a result, equations (4-22)

and (4-23) have only the two unknown fluxes: qo, z and q., n for the diffuse

surfaces, and these quantities can be determined without considering

the q,., for the specular surface. The value of qo, _, if desired, is found

by using equation (4-18). The number of equations that must be solved

simultaneously is thus equal to the number of diffuse reflecting surfaces;

these equations express the outgoing radiation from each diffuse surface
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in terms of the diffuse portions of the outgoing radiation from all the
surfaces.

To demonstrate further and begin to generalize the radiative heat
balances in an enclosure having some specular reflecting surfaces, con-

sider the rectangular geometry shown in figure 4-9. All of the surfaces

A1. T1.

diffuse emitter,
diffuse reflector

A2, T2o

diffuse emitter,
diffuse reflector A2I3)

A6,Ta, \
diffuse emitter,

specular relle_or

A].(4)

A3, T3,

diffuse emitter,
specular reflector

A4(3)

j _ /- Ray path_, through

i A3(4) _,mages
\

I
I

A2(41 A2(3-4)

A2(4-3)

1
I
I
JA1(3)

I
I
J
I
I
A1(3-4)

A1(4-3)

I
"1
I

FIGURE 4,-9.- Rectangular enclosure and reflected images when two adjacent surfaces
are specular reflectors and other two are diffuse reflectors.

are diffuse emitters; two of the surfaces are diffuse reflectors while the

remaining two are specular. Shown dashed are the reflected images.
The reflection process continues until all of the outer perimeter enclosing

the composite of original enclosure plus reflected images is made up of

either diffuse (or nonreflecting, such as an opening) surfaces or images
of diffuse surfaces.
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For the enclosure in figure 4-9, the first step is to obtain qo, 1 and

q,, = for the two diffuse areas. From equation (4-18) these can be written

as

qo, ! = ¢lo'T_ + (1 - {l)ql. l (4-24)

qo, == ¢2o'TI + (1 -- _2)ql, (4-25)

The qi. t and qi. 2 are determined from the diffuse portions of the outgoing

energies from all the enclosure surfaces as follows: Consider, for ex-

ample, the quantifies that form q_. t. Part of qo, I returns to A_ by three

paths: (1) direct reflection from A3, (2) reflection from .43 to .4, and then

to .41, and (3) reflection from .44 to .43 and then to .41. Thus, the portion

of the energy leaving AI that returns to A_ is

q=. IA l[p,. sFl(a_-I + p,. sPs.,Fl(a-o-I + p,. *Ps. _'1(4-3)-1]

The factor Flo-,_-, is the view factor by which .41cs-4_ is viewed from AI

through ,44 and then .4=,), which are the reflection areas by means of

which the .41(s-4_ image was formed. Similarly, F,_4-3_-! is the view factor

by which the same area.4|(s-4_ is viewed from .41 through .43 and then .4_3_.

The q°, = leaving .4= contributes to q_, _ by reaching .4_ along four paths:

(1) direct exchange, (2) reflection from .43, (3) reflection from .44, and

(4) reflection from .4a to ,44. There will be no energy from .42 that reaches

.4_ by means of reflections from .44 and then .43. This is because .41

cannot view the image .4z(4-a) through area A3.

The diffuse energy leaving the specular surface .4a (and similarly for

.4,) consists only of the emitted energy _/ao'T_. There are two paths by

which some of this wiLl reach .4_: (1) by direct exchange, and (2) by means

of specular reflection from .44.

Combining all of these terms yields q_. _, the incoming energy to .4_,

in terms of the diffuse quantities leaving all the surfaces,

A,qt., =.4,qo. _{p,. _F,c3,-1 +p,. 3p_., [F,_a-4_-, + F,4-3_-,] }

+ A,.,qo, z [F._-I + p,. 3F.,(3_-1 + p,. ,F._(4)-I + ps. 3p,. 4F.,(3-4)-1 ]

+ .43_0"T:t [F_-I + p,, ,F=,__,] + .44_,0"T1 [F,-, + p,. _F,_-, ] (4-26)

The angle factor reciprocity relation (eq. (4-15)) can then be applied to

replace all areas in equation (4-26) with .4_, which can then be elim.

inated. The resulting equation is equated to qt, _ from equation (4-24)

to give
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qo, I _ EI(TT_

+ qo,2[F,-2 + P,. _F_-2_3_+ P,. ,at"t-=4)+ p,. 3p,. -_-=_-4>]

+ eatrT] IF,_3 + p., .F, __,_] + a.o'T_ [F, -4 + p,. aF, -4<s)] (4-27)

In a similar fashion, considering q_,2 for surface 2 yields

q° '_1--¢2--E_o'TJ----qo. _[F=-_ + p,. 3F.,- _c.1_+ p,. _v2- _,_+ p,, 3p,..iF2-, (4-3)]

+ qo, ={p,, .r'.__=,)+ p,, 3p,, 4[F..,-2.-a_ + F,-=a-,_] }

+ _3o'Tl[F.,-s + p,, 4F=-=,)] + _4o'Tl [F.,-4 + p., 3F,-4_a)] (4-28)

Equations (4-27) and (4-28) are solved simultaneously for qo,, and qo,2.
For the two specular surfaces, the q_.3 and qi, 4 can be found as soon

as the qo'S for the diffuse surfaces are known. For specular surface A._,

the incoming radiation is

A3qf, 3= A iq°. I IF,-3 + p,, 4F1(4_-3]

+ A2q., =[F=-3 + p,, 4F,,._-a] + A4¢.,o'T:IF4-_ (4-29)

By using reciprocity, the Ha can be eliminated; thus

q_,a = qo, _[F:_-_+ p,. _Fa-_._] + qo, =[F3-_ + p.,, 4F3-_.)] + ¢4o'T4F3-4

(4-30)

Similarly, for ql, 4,

q_._= qo, _[F4-_ + p,, _F_-,,3_] + qo, *.[F4-=+ p,. aYF4-=t._)]+ ¢ao'T_F4-a

(4-31)

For the diffuse surfaces, the net flux added to maintain thermal equilib-

rium is, from equation (3-6),

-Q-_= _' (o'T'_--qo,,) (4-32)
A_ 1 --a_

Q"= _': (o'7",_,- qo, 2) (4-33)
A.. 1 -- _ "
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while for the specular surfaces, by eliminating qo from equations (4-17)

and (4-18), the result is

Aa (4-34)

Q'= e,(crTl - ql. 4) (4-35)
,44

All factors needed for solution of the problem are now known. When

surface 1 (or 2) is black, equation (4-32) (or eq. (4-33)) cannot be used

because qo.,fo'T_ and 1-el = 0 so that an indeterminate expression
results for Q,. In this case, as in example 4-5, qj., is found from equation

(4-26) and then Q,/A, = qo. , - q_. , = o'Tt - qj. ,.
Generalization to the case of an N surface enclosure is possible. For

the enclosure surfaces at specified uniform temperatures, examine the

equations for qo from the diffusely reflecting surfaces, as given by equa-
tions (4-27) and (4-28) for the enclosure in figure 4-8. These can be
rewritten in the form

q,., = e,crT_ + (1 - e,)(qo., {p,. if',-,(3)+ p,. 3p,, ,[F,-=(3-,)+ F1-,(,-3)]}

+ qo.z[F,-= + p,. ff',-z(a) + p,. ,F,_z.) + p,. sp,. ,F_-2(3-4)]

+ (aorTa[F,-3 + p,, _",-a,)] + _o'TI[F,-, + p,, _F;-a,)])

4 •= e, orT_+ (1 -- el)(qo. 1Fsl_l + qo. 2F',_z + eao'T3F,_3 + e,o'T_F__,)

(4-36)

qo._ = e:o'T_ + ( 1 - e._) (q o., IF.,-, + p,. 3F..,-,(a) + p,. 4F-,-I(,)

+p,. 3/),, _"2-t(4-:;)] + qo. 2{p,. ,F:_-z(4)

+ p,. 3p,., [F.,-2(,-3_ + F2-_(3-,,] ]' + e._o'r][F_-3 + p,. ,F.,-a(4_]

+ e,o'T_ [F_-, + p.. :_F_-.,a)] )

= e_o'T', + ( 1 -- e.z) (qo,, F|_, + qo, zF___ + e._o'TIF'__3+ _o'T 1F[_,)

(4-37)

where the factors F__s give the fraction of the diffuse energy leaving
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surface .4 and reaching surface B by direct exchange and by all possible

paths of specular reflection.
For an N surface enclosure made up of d diffuse and N-d specular

reflecting surfaces at specified temperatures, a general set of equations

of energy exchange can be written by generalizing equations (4-36) and
(4-37). Let the diffuse surfaces be numbered from 1 to d and the specular

surfaces from d+ 1 to N. Then the general equation is written for each
diffuse surface as

d N

j-I j-d÷l

1 _ k _ d (4-38)

This set of equations is solved for the qo for the diffuse surfaces. For

each specular surface, the qo'S for the diffuse surfaces are used to
obtain qj. k in the form (a generalization of eqs. (4-30) and (4-31))

d N

qi'k----2 q°'jFsk-J +_- 2 _'jT_FIt-J d+ l _k_N (4-39)
./-I j=d+t .

The net external energy added to each diffuse surface is

ek

Qk=.4k l-'Z-_ (crTl--qo.u) l _k_d (4-4O)

and, to each specular surface

Q_=Ak_(crT_-qt.k) d+l _]_ _N {4-41)

Equations (4-38) to (4-41) are the general energy interchange relations
for enclosures made up of diffuse surfaces and specular surfaces.

If the kth diffuse surface is black, then qo. k--crT_ and 1- ek = 0, so

that equation (4-40) is indeterminate. In this case, the following equation
can be used:

Qkf .4a.(o'T_-q_.k)

where qi. k is found from equation (4-39) with 1 _ k _ d.
If the heat input Q_ rather than Tk is specified for a diffuse surface

1 _ k _ d, then T_ is unknown in equations (4-38). Equation (6--40)
can be used to eliminate this unknown in terms of qo. k and the known Q_.

If the heat input Qk is specified for a specular surface, d + 1 _<k _ N,



ENCLOSURE WITH SPECULAR SURFACES 139

then one of the T_ in the last term of equation (4-38) will be unknown.
Equation (4-41) is combined with equation (4-39) to eliminate q_,k
which gives

k d N
4__ Qk = . s _.jT:FIt_j

°'TI dk_k _ q°'jFk-l+a" _
j_d+ l

d+ 1 _ k _ N (4,-42)

Since Q_ is known, equation (4,-42) can be combined with equation
(4-38) to yield a simultaneous set of equations to determine the qo of

the diffusely reflecting surfaces and the T for the specularly reflecting

surfaces having specified Q.
An alternate form of the final equations can be found by using equa-

tions (6-40) and (4-41) to eliminate ql and qo from equations (4-38)

and (4-39). This gives a set of equations all of the same form that

directly relate the Q's and T's,

1 _ k _< N (4,-43)

4.4.2 Curved Specular hqlecting Surfaces

In the previous discussion, all of the specular surfaces have been

planar. Here, curved specular reflecting surfaces will be considered, and
in this instance, the geometry of the reflected images can become quite

complex. To demonstrate some of the basic ideas, a relatively simple
case will be examined; this is the radiation exchange within a specular

tube (ref. 6), as shown in figure 4-10.
It is assumed that the imposed temperature or heating conditions

depend only on axial position and are independent of the location around
the tube circumference. To compute the radiative exchange within the

tube for axisymmetric heating conditions, it is necessary to have the
configuration factor between two ring elements on the tube wall. The

direct exchange (fig. 4-10(a)) is governed by the factor (see example
3-8, and note that [_-_[ in that example is equal to X/D here)

dF ,tx,.-_._:=
X\ 3 3X ]

Figure 4-10(b) illustrates the configuration factor for one reflection.

323-003 O-69--10
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,,- Specularly reflectin_ _ dX-'_ t"-" dXl / interior surface |

',V)J__L
b × I

(a)

--1 i"-- dxl -11"-_x'2 --1 _x

dxl-'l t"- -"It "--dx13 dx---t_'-

Ic)

ta) Direct exchange between two ring elements.

(b) Exchange by one reflection.

(c) Exchange by two reflections.

FIGURE 4--10.- Radiation exchange within specularly reflecting cylindrical tube.

Because of the symmetry of the tube, all of the radiation from dX_ that

reaches dX by one reflection will be reflected from a ring element
halfway between dX, and dX. The ring at X/2 is only dX/2 wide so that

the beam subtending it will spread to a width dX at the location X.
The configuration factor for one reflection is then the factor between

dXt and the dashed element dX/2

dF_x ,-(_m =

X\ 3X I
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In a similar fashion, the geometric factor for exchange between dX_

and dX by two reflections is given by

and for n reflections

dF_,-(ax/s)=

I X 3 3X
1- r/_--_,,/-]-

Lt : J

dFttx.,-[d.x./(_ + l)]

1- X 3 3X /)/

[(n +-1)/)] + 2(n'-+'1) dX

fF X "12 13/_ / n+l

(L J +'I /
In general, the geometric factor for any number of reflections can be

found by considering the exchange between the originating element

(dXl in this case) and the element (call it dXz) from which the first re-
flection is made (the dashed element in figs. 4-10(b) and (c)). This is

because the fraction of energy leaving dX_ in the solid angle subtended

by dX2 remains the same through the succeeding reflections along the
path to dX.

At each reflection, the energy must be multiplied by the specular

reflectivity ps. If all the contributions are summed, the fraction of energy
leaving dX1 that reaches dX by direct exchange and all reflection paths

provides the specular exchange factor

r X "1_ 3X
L(n I)DJ "f 2(n+-"l)D / dXdF_,_,,r= p,,, 1 7F--_--"1s---- _ -_ _ (4..-44)

When the geometry is even slightly more involved than the cylindrical

geometry, the reflection patterns can become quite complex. Some fur-

ther specific examples of radiation within a specular conical cavity and

a specular cylindrical cavity with a specular end plane are given in
reference 7. A more generalized treatment of nonplanar reflections is

given in reference 8.

EXAMPLE 4--6: A cylindrical cavity has a specularly reflecting cylindri-
cal wall and base (fig. 4-11(a)). Determine the fraction of radiation from

ring element dXl that reaches dX by means of one reflection from the

base with reflectivity pl and one reflection from the cylindrical wall with
reflectivity p=.
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ta)

6XI dXI

1

._----4x+ xl_z----I
X+X I

(hi

(a) Cavity geometry.
(b) Image of dXi formed by reflection in cavity base.

FIGURE4--ll.-Reflection in cylindrical cavity with specular curved wall and base.

As shown in figure 4-11(b), for this geometry, the reflected radiation

from the base can be regarded as originating from an image of d.X,. The

second reflection will occur from an element of width dX/2 located mid-

way between the image dX, and d.X. The desired radiation fraction is

given by the view factor from the image d.X, to the dashed ring area

dX/2, that is,

4.5 CONCLUDING REMARKS

In this chapter, the treatment has been presented of radiative inter-

change between specularly reflecting surfaces and in enclosures con-

taining both specularly and diffusely reflecting surfaces. In many

instances, as in example 4-5, the interchange of energy in enclosures is

modified only a small amount by the consideration of specular surfaces

in place of diffuse surfaces; however, in certain configurations, for
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example, those found in the design of solar furnaces, large effects of

specular reflection are present..
Bobco (ref. 9), Sparrow and Lin (ref. 10), and Sarofim and Hottel

(ref. 11) have examined radiative exchange in enclosures involving sur-

faces with a reflectivity having both a diffuse and a specular component.
Another remark may be apropos at this point. It has sometimes been

implied that the actual energy transfer between two real surfaces can be

bracketed by calculation of two limiting magnitudes: (1) interchange
between diffuse surfaces of the same total hemispherical emissivities as

the real surfaces, and (2) interchange between specularly reflecting sur-
faces of the same total hemispherical emissivities as the real surfaces.

This implication is not always true, however. Consider a surface which
has a reflectivity as given by figure 4-12(a) (this is the type of reflectivity

expected for the surface of the Moon). Now consider the radiant exchange
between this real surface 2 and a black surface 1 as shown in figure

4-12(b). If surface 2 is given specular properties, it will return no energy

to the black surface by reflection (fig. 4-12(c)). If given diffuse properties,

it will return a portion of the incident energy by reflection (fig. 4-12(d)). If
allowed to take on its real directional properties, however, it will reflect

more energy to the black surface than either of the so-called limiting

ideal surfaces (fig. 4--12(e)). Thus, the ideal directional surfaces do not

constitute limiting cases for energy transfer in general. Figure 5-11
demonstrates another case where diffuse and specular properties do not

provide limiting solutions. At best, calculations based on specular and

diffuse assumptions for the surface characteristics give some indication
of the possible magnitude of directional effects. Within enclosures, these
directional effects may be small because of the many reflections taking

place between the surfaces.
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Chapter 5. The Exchange of Thermal Radiation

Between Nondiffuse Nongray Surfaces

5.1 INTRODUCTION

The analysis of radiation exchange within enclosures, as discussed

in chapters 3 and 4, was restricted to cases where the enclosure surfaces
were either black or gray. If gray, the surfaces were assumed both to

emit and to reflect diffusely, or to emit diffusely and to reflect specularly.
The additional restriction was sometimes made that the radiative

properties were independent of temperature. As shown by the graphs

of real properties in chapter 5 of Vol. I, most engineering materials
deviate (in some instances radically) from the idealizations of being

black, gray, diffuse, specular, or having temperature-independent

radiative properties. In most practical engineering situations, the as-

sumption of idealized surfaces is made to simplify the computations.
This is often the most reasonable approach for two reasons:

(1) The radiative properties are not known to high accuracy especially
with regard to their detailed dependence on wavelength and direction;

hence, performing a refined computation would be fruitless when only

crude property data are available.
(2) In an enclosure, the many reflections and rereflections tend to

average out radiative nonuniformities; for example, the radiation leaving

(emitted plus reflected) a directionally emitting surface may be fairly
diffuse if it consists mostly of reflected energy arising from radiation
incident from all directions.

In order to gain some insight as to where simplifying assumptions
are at all reasonable, it is necessary to carry out some exchange com-

putations using as exact a solution procedure as possible. Then re-
suits of those computations can he compared with those obtained from

simplified methods such as those in chapters 3 and 4. To provide the

tools for making refined computations, some methods of treating the
radiative interchange between nonideal surfaces will be examined in

this chapter. Analysis of such problems is inherently more difl%ult than
for ideal surfaces, and a complete treatment of real surfaces including

all variations, while possible in principle when all radiative properties
are known, is seldom attempted or justified. As stated earlier, the

directional-spectral properties are often not available. Property varia-
tions with wavelength for the normal direction are available for a number

of materials; the data are usually sparse at the short- and long-wave-

147
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length ranges of the spectrum. _ Directional variations for some materials

with optically smooth surfaces can be computed using electromagnetic
theory (chapter 4 of Vol. I).

Certain problems demand inclusion of the effects of spectral and

directional property variations and the methods presented here must be

utilized. One example would be the use of spectrally selective coatings

for temperature control in systems involving solar radiation.
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5.2 SYMBOLS

area

autocorrelation distance of surface roughness

first and second constants, respectively, in Planck's spectral

energy distribution

perpendicular distance between parallel areas

emissive power

configuration factor
fraction of blackbody intensity in spectral range 0 to X

function of emissivities in example 5--5

intensity
width of infinitely long parallel plates

L/D, parameter in example 5-6
energy rate; energy per unit time

energy flux; energy per unit area and per unit time
radius of disk in example 5-7

R/D, parameter in example 5-7
distance between area elements

absolute temperature
Cartesian coordinates

absorptivity
cone an_le

emissivity
angle in plane perpendicular to surface

circumferential angle
wavelength

absorption efficiency defined in example 5-6
distance along width of plane surface having finite width

and infinite length

reflectivity

t The range for which data ale avaiILbln depends on the eqmpment used in taking the data. and. of course, whether

data have been _thered at all for the material desired. Typically, data are not available for most materials at wavelengths

o( less than 0.3 #.m or _eater than 15 ,_n. If the common lead sulfide detector is used to obtain data, the sensitivity

limits measurements to less than about 3 p.m.
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o"

CTo

oJ

fo

Stefan-Boltzmann constant

root-mean-square amplitude of surface roughness

solid angle

integration over solid angle of entire enclosing hemisphere

Superscripts:

' directional quantity

" bidirectional quantity

Subscripts:

a absorbed

b blackbody

e emitted

i incident, incoming

k quantity for k th surface
max maximum

rain minimum

o outgoing
r reflected

s specular

h spectrally dependent

AX average over wavelength region AX

1,2, 3 property of surface 1, 2, or 3

5.3 ENCLOSURE THEORY FOR DIFFUSE SURFACES WITH

SPECTRALLY DEPENDENT PROPERTIES

By considering diffusely emitting and reflecting surfaces there are

no directional effects, and it is possible to see more clearly how the

spectral variations of properties can be accounted for. The surface

emissivity, absorptivity, and reflectivity are independent of direction,

but may depend on both wavelength h and surface temperature T. These

properties must be available as a function of T and h in order to evaluate

the radiative interchange between surfaces.

For diffusely emitting and reflecting spectral surfaces, the concept

of configuration factor is still valid since these factors involve only

geometric effects and were computed for diffuse radiation leaving a

surface. In general, then, the energy balance equations and methods

developed in chapters 2 to 4 remain valid so long as they are written for

the energy in each wavelength interval dh. Often, however, the boundary

conditions that are specified apply to the total (including all wavelengths)

energy, and care must be taken to apply the boundary conditions cor-

rectly. These total boundary conditions cannot generally be applied to
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dQxi(or Qi}

OQho(or Qo)

FIGURE 5-1.-Spectral (or total) energy quantities at a surface.

the spectral energies. As an example, consider the surface of figure 5--1
having an incident total radiation Ql and a radiation leaving by combined
emission and reflection Qo. If the surface is otherwise perfectly insulated

(an adiabatic surface), then there is no heat Q being added externally

and Qi and Q° will be equal to each other,

Qo-Q,=Q=O (5-1)

However, at a given wavelength, the incident and outgoing dQx axe not

necessarily equal, so that in general

dQ_ - dQx, = dQx _ 0 (5-2)

Rather, an adiabatic surface only has a total radiation gain or loss of
zero, or restating equation (5-1) in terms of the quantities in (5-2),

Q ao

The dQx is net energy supplied at k as a result of incident energy at
other wavelengths. At a given wavelength, the dQx can vary widely

from zero for an adiabatic surface, depending on the property variations

with wavelength and the spectral distribution of incident energy.
More generally, consider now adiabatic z surface. The total energy

tTo quote Breene (ref. 1}. "In certain circles 'nouadiabatic" is considered u an 'atrocious, pleoaastic sTnonym." and

the author quit using the term as soon as he discovered how bad it was."



EXCHANGE FOR NONDIFFUSE NONGRAY SURFACES 151

added by external means to the surface is given by

Qf f_*.o dQxf f;-o (dQx_-dQ_) (5-4)

The Q may either be specified as an imposed condition, or may be a
quantity that is to be determined in order that a surface can be main-

tained at a specified temperature. In any small wavelength interval,

the net energy dQ_,o-dQ_,i may be positive or negative. The boundary

condition states only that the integral of all such spectral energy values

must be equal to Q. To become familiar with the use of these concepts,
they are now applied to some example situations.

EXAMPLE 5--1: Two infinite parallel plates of tungsten at specified

temperatures 7"1 and T., (T, > Tz) are exchanging radiant energy.
Branstetter (ref. 2) has determined the hemispherical spectral,

temperature-dependent emissivity of tungsten by using the relations

of electromagnetic theory to extrapolate limited experimental data,
and a portion of his results is shown in figure 5-2. Using these data,

compare the net energy exchange between the tungsten plates to that
for the case of gray parallel plates.

The solution for gray plates has been given in example 3-1. The

present case follows in the same fashion except that the equations are

written spectrally. From equations (3-1) and (3-2) the energy quantities

.45

.3.'

O5

, t , I , I , I I I I t I I I I
2 4 6 8 10 12 14 16

Wavelength, _, _rn

Flotrl_ 5-2. -- Hemispherical spectral emissivity of tungsten.
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at surface 1 per unit area and time in a wavelength interval dk are

related by

dq_. t = dq_o. t - dq_,, ! (5-5)

dq_o.l=ex.l(_t, TI)e_,l(_t, Ti)d_t+px.l(_,T,)dq_.l (5-6)

For diffuse opaque surfaces, the hemispherical properties are related

by p_= 1 -ot_= 1 -e_, and equation (5-6) becomes

dq_,o,t=e_,,1(k, Tl)e_.l(k, Tl)d_+[1--t_,(k, Tl)]dq_,i., (5-7)

Eliminating dq_,_, i from equations (5--5) and (5-7) gives

E_,, (k, Ti ) [e_. L( _, T_ ) dk - dq_,o, _] (5-8)
dq_. 1= 1 -E_. i( k, T1)

Since for infinite parallel plates, the configuration factor F2 - t = 1, then

q_, 1= q_. 2 (see eq. (3-5b)) and equation (5-5) becomes

dqu. , = dq_. , -- dq_,o. 2 (5-9)

Equations (5-8) and (5-9) axe analogous to equations (3-8a) and (3-8b)

for the gray case. The equations for surface 2 are written in a similar

fashion. Then the dq_'s are eliminated, and the solution for one wave-

length interval d_, follows as in equation (3-10),

dq_. _=-dq_. 2= [ e_, _(k,Tt)e_'_(k'T_)--e_b"z(k'T2)l4- e_. .,(_,,T.,)I 1]dX (5-10)

The total heat flux exchanged (supplied to 1 and removed from 2)

is found by substituting the property data of figure 5-2 into equation

(5-10) and then integrating over all wavelengths,

s:ql =--q',= dq_. l 1 1

The integration is performed numerically for each set of specified plate

temperatures 7"1and T.,.
The results of such integrations, as carried out by Branstetter (ref. 2),

are shown in figure 5-3 where the ratio of gray-diffuse to nongray-diffuse
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FIGUI_ 5---3.-Comparison of effect of gray and nongray surfaces on computed energy

exchange between infinite tungsten plates (from ref. 2).

exchange is given. The gray-diffuse results were obtained using equation

(3-10) with hemispherical total emissivities computed from the hemi-

spherical spectral emissivities of figure '5-2. (In the gray computation

by Branstetter, the emissivity of the colder surface 2 was inserted at

the mean temperature V_i7"2 rather than at 7"2, which is a modification

based on electromagnetic theory that is sometimes recommended for

metals (ref. 3)). Over the range of surface temperatures shown, devia-

tions of 25 percent below the nongray energy exchange are noted in the

gray results.

EXAMPLE 5--2: Two infinite parallel plates and their spectral emis-

sivities at their respective temperatures are shown in figure 5-4. What

is the total heat flux q passing across the gap?

From equation (5-11)

f: e_,,(k,T,)- exb._(_,,7".,)d_.+/_ e_,_(_.,T,)- exb,z(_.,7".,.)dXq= ,+i+ --1 _.8 _--_-_-__--1

+ f exn, l(__,T,)-e_,_ ,T.,.)dX

,_ 1+1_ 1
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FIGUI_ 5-4.-Example of heat transfer across space between infinite parallel plates hav-

ing spectrally dependent emissivities.

which can be written as

[o.341ff 0.596 f sq=o'T+z _ e+,,(_,T,_zx+--_-_, j:, e+.,X,x.,r,)ax

0.2+9 F 0.341 f'_

0.596 , 0.27 T.,)dk ]+-_-f; ++.,(>,.,,'.,_+-_+9f'++,+.,.<>,.

,#An integral such as _ eXO, _(k, T1)dk is the fraction of blackbody
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radiation at T_ between k=3 and 5/zm, which is F3T,-sr,-=Fsooo_lsooo
and can be computed from the table of blackbody radiation functions
(table V in the appendix of Vol. I). The Far-should not be confused with

the geometric configuration factor. Then

q= o'T_(0.341 Fo-3T, + 0.596 F3Tt-Sr, Jr" 0.279 FsT',-®)

- crT_(0.341 Fo- 3r, + 0.596 F3Tf-ST, + 0.279 Fsr,-,) = 43 600 Btu/(hr)(ft 2)

EXAMPLE 5-3: An enclosure is made up of three plates of finite
width and infinite length, as shown (in cross section) in figure 5-5. The

• T3' _., 3t_, T3)/ /

_'_0 ® dqx, 2 )# ",_ T2,¢_,2(_, T2)

FIGURE 5--5.- Radiant interchange in enclosure with surfaces having spectrally _ar,/ing

radiation properties.

radiative properties of each surface are dependent upon wavelength and
temperature, and the temperatures of the plates are Tt, 7"2, and 7"3.

Derive a set of equations governing the radiative energy exchange among
the surfaces.

The configuration factors for such a geometry are derived in example
problem 2-15. The net spectral energy flux supplied to surface 1 can be
written as

dQ_,..........._=_,.t(k,T,) [e_,,(k,T,)dk-dqxo,,] (5-12)
dq_,.l= A, 1--E_, _(_, Tl)

and

dqx. l =dQx-t'_l= dqxo, i- F,_2 dqx_,_- Fl_a dqxo, a (5-13)

323-003 O-69--11
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]*hese equations are derived in direct analogy with those for a gray

surface, equation s (3-6) and (3-7), and by noting that F_ _ _= 0. It should
be emphasized that dq_ is the energy supplied to the surface in wave-
length interval dk as a result of external heat addition to the surface and

energy transferred in from other wavelength regions.
Similar equations are written for surfaces 2 and 3. The result is a

set of six simultaneous equations for the six unknowns dq_o, _, dqXo, 2,

dqxo. 3, dqx. 1, dqx, 2, and dqx, 3. The solution is carried out for the dqx

in each wavelength interval dk.
If the properties of the surfaces are invariant over some fairly large

spectral interval Ak, then the equations may be solved ever this entire
interval. In this instance, the emissive power exa, l(k, T,)Ak would be

replaced by o'T_F_r,-tx+_xrr, the amount of blackbody radiation at 7"1
in the interval from k to k-t-Ak. Finally, q at each surface is found by

integrating dqx for that surface over all wavelengths

q = f_ dq_, (5-14)

This is the heat flux that must be supplied to the surface externally in

order to maintain its specified surface temperature.

EXAMPLE 5--4: Consider the geometry of figure 5-5. Total energy

flux is supplied to the three infinitely long plates at the rates qt, q_,

and qa. Determine the temperatures of the plates.
The equations are exactly the same as in example 5-3. Now, however,

the prescribed boundary conditions have made the problem much more
difficult to solve. Because the surface temperatures are unknown, the

emissivities are also unknown because of their temperature dependence.
The solution is carded out as follows: A temperature is assumed for each

surface, and dqx(k, T) for each surface is computed. The dqx(k, T)
values are then integrated to find q_, q.,, and qs, which are compared

to the specified boundary values. New temperatures are chosen and the

process is repeated until the computed q values agree with the specified
values. The new temperatures for successive iterations must be guessed

on the basis of the property variations and experience about the manner
in which changes in T are reflected in changes in q throughout the

system.

5.4 THE BAND ENERGY APPROXIMATION

The solution method presented and demonstrated in section 5.3 for

spectraUy dependent surfaces has required integrations over all wave-

lengths in order to compute the net total energy transfer. These integra-
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tions are the complication that makes surfaces with spectraLly dependent

properties so much more difficult to deal with than gray surfaces.
Shortcut methods are desirable for circumventing the tedious numerical

integrations that are required for rigorous solution of these problems.

Some loss of accuracy in the integration may be acceptable in a practical
application because of the uncertainty already present in many of the
spectral property values that are used.

5.4.1 Multiple 6onds

One method of approximation of the integrals is the band energy

approximation. This is the conceptually simple approximation of replac-
ing the single integral extending over all wavelengths by a summation

of smaller integrals, where each of the smaller integrals extends over a

portion of the spectrum. An example will serve to illustrate the applica-
tion of this method.

EXAMPLE 5--5: Two infinite parallel plates of tungsten are at tempera-

tures of 4000 ° and 2000 ° K. Using the data of figure 5-2, compute the
net energy exchange between the surfaces by using the band energy
approximation.

In example 5-1, the net exchange between the plates is given by the

exact expression (eq. (5-11))

fo"Iex_,1(k, Tt,)-ex_,2()t,T:)]dkql=--q2= I + I --I
_,,._(X,T3 _._,._(X,I"2)

By using the substitution

1
Gx=

!+__1 _1

to shorten the notation, this can be written as

qtff:Gxexb._dk--f:C, xexb._dh

The integrals are now written as approximate sums

q, "=_, (GAxeax,n, 1 AX)I--'_ (Gaxeax, n, .. AA),,,
1 m

(5-15)
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where Gax and e_x, b are average values applicable to the wavelength

interval Ak. Depending upon the way in which Gx_ and e_x, _ are eval-

uated, equation (5-15) can have various degrees of accuracy. As a
simple approximation the terms e_,,b can be taken as an arithmetic

mean of the blackbody emissive power over AX. To obtain a better de-

gree of approximation for large A_, intervals, e_, b can be evaluated using

the blackbody functions as

+Ake_. _ Ak = e_ d_, =[Fo-(_+_x) - Fo- _]o'T* (5-16)

where k and k+ AX are the upper and lower limits of wavelength for

the interval A_,. Equation (5-16) will be used for the computations given

here. It was previously used to evaluate the exact integrals for a simple

problem in example 5-2. The G_, terms in equation (5-15) are approxi-
mated most simply by

1

• _, t EA_,,

(5-17)

where the _ are appropriate mean emissivities over the wavelength
interval Ak.

In figure 5-6, the required emissivities of tungsten are plotted, and

•51
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FIGUgE 5--6.--Band approximations to hemispherical spectral emissivity o_"tungsten.
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arithmetic mean values are shown for seven Ah intervals (the seventh

interval being for h > 20/zm). For temperatures of 2000 ° and 4000 ° K,

the peak in the e_o function occurs at about 1.5 and 0.75/zm, respectively.

For large values of ;_, such as )_ > 4gin in this example, the e_ is small

and Gxe_ will contribute little to the integrals in this wavelength region.

Thus, the accuracy of the averages at large values of h is not important

in this example. The computations for ql are carried out using these seven

intervals in the following tabulation:

_m Wlcm s

0 to 1 0.410 0.445 0.271 0.698 x 10*

1 to 2 .335 .300 .188 .545
2 to 4 .290 .195 .132 .171

4 to 8 .205 .140 .0907 .032
8 to 12 .160 .115 .0717 .004,

12 to 20 .140 .095 .0600 .001

>20 ~0 -0 _0 -0

Totals

0.0061 × IOs

.0374

.034

.011

.002

_0

_0

W/trot

1.89 x lOs

1.03
.23

.03
-0

_0

_0

3.18x lOs

0.017 x lOs

.071

.045

.010

.002
_0 b

--0 )

0.145 x 10 s

Substituting the sums from the tabulation into the approximate band

energy exchange equatioo gives q_ --- (3.18 - 0.15) ×10* ffi 303 W/era z.

Branstetter (ref. 2), using numerical integration, found the exact

result of q, = 300 W/cm 2 for this case. The approximate band solution

using seven intervals is thus in error by a very small amount. Examina-

tion of figure 5-3 shows that the gray body assumption, which can be

considered as a one-band approximation, yields answers that are

in error by almost 10 percent (note that the gray results in fig. 5-3

were modified from the usual gray analysis by inserting e, at

rather than at ]"2).

A close examination of the tabulation shows that most of the significant

energy transfer for this example occurs in the wavelength range of 0 to

2 /_m. If necessary, the accuracy of the band energy approximation

could be improved by dividing this range of most significant energy

transfer into a larger number of increments and repeating the calculation.

The errors in the band energy approximation will arise in the regions

where both e_ and e_ are large; thus the wavelength range should be

divided such that most of the bands lie within these regions.

The band energy approximation is nothing more than a simple form
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of numerical integration carried out by using a relatively small number

of wavelength intervals. If the number of intervals is increased, the

exact results for energy transfer are approached. Dunkle and Bevans

(ref. 4) give a calculation similar to example 5-5 and show errors from

an exact numerical result of less than 2 percent for the band energy

solution as compared to about 30 percent error for the gray surface

approximation. They give other examples of applications in enclosures

with specified temperatures or net energy fluxes.

Some additional references providing analyses of energy exchange

between spectrally dependent surfaces are those of Love and GiLbert

(ref. 5), Goodman (ref. 6), and Rolling and Tien (ref. 7). In reference 5,

the analytical results compare well with experimental results for a

geometry closely approximating infinite parallel plates.

5.4.2 The Semigray Approximations

In some practical situations, there is a natural division of the energy
within an enclosure into two well-defined spectral regions. This is the

case for an enclosure with an opening through which solar energy

is entering. The solar energy will have a spectral distribution concen-

trated in a short wavelength region, while the energy originating by

emission from the lower temperature surfaces within the enclosure

will be in a longer wavelength region. A practical way of treating this

situation is to define a hemispherical total absorptivity for incident

solar radiation and a second hemispherical total absorptivity for incident

energy originating by emission within the enclosure. This approach can

be carried to the point of definingj different absorptivities for surface k,

one absorptivity for incident energy from each enclosure surface j.

The assumption entering these analyses is that each absorptivity

a_(Tk, Tj) is based on an incident blackbody spectral distribution at

the temperature of the originating surface T_. Of course, the incident

spectrum may actually be quite far removed from the Planckian form,
and this is the weakness of the method. Often, the dependence of ct_.

on Tk is small, so that the principal dependence is on T_ or, in other

words, on the distribution of the incident spectrum. Because the absorp-

tivity ak(Tk, Tj) and emissivity ee(Tk) of surface k are not in general

equal, this approach is often called the semigray enclosure theory.
Reference 8 contains the formulation of a semigray analysis for a general

enclosure.

Plamondon and Landram (ref. 9) have compared the semigray and

exact solutions of the temperature profiles along the surface of a nongray

wedge cavity exposed to incident solar radiation, as shown in figure 5-7.
The wedge cavity is assumed to be nonconducting, to be in a vacuum

with an environment at zero degrees except for the solar radiation, to

have properties independent of surface temperature, and to have
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FIGURE 5"-7.- Effect of semigray approximations on computed temperature distribution in
wedge cavity.

diffuse surfaces. Three solution techniques are given in reference 9.

The first is an exact solution of the complete integral equations and is

called the "exact" solution. The first approximation to the exact solution,

called "Method I," is the semigray analysis which assigns an absorp-
tivity O_,o_o,for radiation (direct and reflected) that originated from the

incident solar energy, and a second absorptivity o_,_=_ (equal to the
surface emissivity) for radiation originating by emission from the wedge
surfaces. Finally, "'Method II" is a poorer approximation that retains

the same two absorptivities but applies ",o_o, only for the incident solar

energy, and then uses '_=_=,-_afor all energy after reflection, regardless

of its source. The resuhs of these methods are shown in figure 5-7(5)
for a polished aluminum surface in a 30 ° wedge. Method I, the full

semigray analysis, is seen to give excellent agreement with the exact

solution while Method II underestimates the exact temperatures by
about 10 percent.
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5.5 DIRECTIONAL-GRAY SURFACES

Some attention has been paid to the development of treatments of
radiation interchange between surfaces or in enclosures where direc-

tionally dependent properties must be considered. The bulk of radiation

analyses invoke the assumption of diffuse emitting and reflecting

surfaces although some treatments do include the effect of specular

reflections as outlined in chapter 4. The diffuse or specular surface
conditions are convenient to treat analytically and in most instances
the detailed considerations of directional emission and reflection effects

are unwarranted. There are, nevertheless, certain materials and certain

geometric situations that require the consideration of directional effects.
In this section, some methods of considering radiant interchange

between surfaces with directional properties will be presented.

The difficulty in treating the general case of directionally dependent

properties is perhaps best illustrated by performing an energy balance
in a simple geometry. Let such a balance for the radiative interchange

between two infinitely long parallel gray nondiffuse surfaces of finite

width L (fig. 5-8) be examined. The intensity of radiationleaving element

_2, T2,*"II32,e2{
Z " / i . / / , i

_///Surtace 2/////_/'_,////I

S "

{L rq31, 811

. dAl'TI,¢(III,81)

FlCURIg 5-8.--Radiant interchange between infinitely long paral/ei directional surfaces
of finite width L.

ddl in direction (_!, 01) is composed of an emitted intensity i[.,(_, &)
-t

and a reflected intensity _t,,(fll, 01), or

if(p,, o,)-- il, ,(p,, ol)+ iI, X I, o1) (5-18)

These two components are given by modifications of equations (3-3a)
and (3-25) of Vol. I as
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i;. _(8., e,) = t;(8,, e,)i;., (T,) (5-19)

and

$

(5-20)

In equation (5-20) the energy incident upon d,4_ from each element

d.42 is multiplied by the bidirectional total reflectivity p_' to give the

contribution to the reflected intensity from d.d, into direction _=, el).
This is then integrated over all energy incident on d/l, from .42. The

definition of p" is that given in Vol. I, which is

i_(8,, e,,/3, e)
p"(S,, 0,, 8, 8) = i; (8, 8) cos 8 d_ (5-21)

The p"(Sr, O,, 8, O) is the ratio of reflected intensity in the (fir, 0r)

direction to the energyflux incident from the (/3, O)direction.

Equation (5-18) for the intensity leaving the element dd_ then becomes

- ' "' f_, Si d.4_i;(8,, o,) -t,(8,, o,)=,,, (T,) + p;(8,, 0,,8,, t_)r.(8,, 6)

(5-22)

A similar equation may be written for an arbitrary element d.d_ on
surface 2. This results in a very complicated coupled pair of integral

equations that must be solved for i'(8, 0) at each point and for each
direction on the two surfaces. This set of integral equations is analogous

to equations (3-50) that were derived for gray-diffuse surfaces. Tabulated

property data of e'(fl, O) and P"(8,, Or, 8, O) for such a situation are seldom
available. For the case when T, and 7'2are not known and the temperature

dependence of the properties is considerable, the solution of the entire
energy exchange determination becomes prohibitively tedious. To

avoid the extreme amount of computation, a number of approximations

can be invoked in the situations where they are justified. Some of these
methods are outlined in references 10 to 14. Rather than try to present

all the possible approximations, an example will be given, and the
reader is left to his ingenuity in approximating the conditions of more
realistic problems. Usually, such approximations involve analytically

simulating the real properties by simple functions, omitting certain

portions of energy that are deemed negligible, or ignoring all directional
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effects except those expected to provide significant changes from
diffuse or specular analyses.

EXAMPLE 5--6: Two parallel isothermal plates of infinite length and

finite width L are arranged as shown in figure 5-9(a). The upper plate 2

Tl.lll'nl)
l

t i

(a)

nl

e' • 0. 8_ cos _l

\-45
P I/_ _-I---_\ X/-,' foract,,al

/ .-'°'u'<',
/ / _ J, J/ \ Hemispherical
I I %, I / x • • 0. 652

, (, ,x.._i_.f, , /,
1.00 .75 .50 .?.5 0 .25 .50 .75 1.00

Directional emissivity. E'IT/1)

Ib)

(a) Geometry of problem. (Environment at zero temperature.)

(b) Emissivity of directional surface.

FIGURE 5-9.-Interchange between grooved directional surface and black surface.

is black while the lower is composed of a highly reflective material with

parallel deep grooves of open angle 1° cut into the surface and running
in the infinite direction. Such a surface might be made by stacking pol-
ished razor blades. Compute the net energy gain by the directional sur-

face if T2 > T_ and compare the result to the net energy gain by a diffuse

surface with emissivity equivalent to the hemispherical emissivity of
the directional surface. The surroundings are at zero temperature.
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The directional emissivity for the grooved surface is obtained from
reference 15, where the directional emissivity at the opening of an in-

finitely long groove with specularly reflecting walls of surface emis-
sivity 0.01 was calculated. The directional emissivity for the grooved

surface is given by the dot-dashed line in figure 5-9(b). The angle

is measured from the normal of the base plane of the grooved surface
and is in a plane perpendicular to the length of the groove as shown in

figure 5-9(a). The ('1(_), as given in reference 15, has already been

averaged over all circumferential angles for a fixed 77,. Thus, it is an
effective emissivity from a strip on the grooved surface to a parallel
infinitely long strip element on an imaginary semicylinder over the

groove and with its axis parallel to the grooves. The angle Th is different

from the usual cone angle ill. The angle/3, would vary along the strip
element of the semicylinder while _t remains constant since it is the

projected angle on a plane normal to the groove. The actual emissivity
('1('ql) of figure 5-9(b) is approximated for convenience by the ana-

lytical expression

• _('h) = 0.830 cos "_1

By using cylindrical coordinates to perform the integration over all

_1, the corresponding hemispherical emissivity of this surface is

/"fl_

Q1 J- '_(171) cos vh d_l fo _'

_'_b= -"-_:12 cos 7h d_l = 0.830 cos ffi7/1 dTh = 0.652

and this result is shown in figure 5-9(b) as a dashed line.
The energy gained by surface 1 when 2 is a black surface and 1 is

a diffuse surface with e = 0.652 will first be determined. The energy

emitted by the diffuse surface per unit of the infinite length and per
unit time is

Q_, 1= 0.652 o.T_L

Since surface 2 is black, none of this energy will be reflected back to 1.

The energy per unit length and time emitted by surface 2 that is absorbed

by surface 1 is

The desired energy gained by 1 is Qa, _-Q_, 1. To evaluate Qa, ,, the

configuration factor between infinite parallel strips was found in ex-

ample 2--4 as

°"
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d(sin _,)
dF_s-d= =

2

By integrating over A.,, the double integral becomes

1 L

fA, (_, dFd,-m) dA,=_ f=..0 (sin r/t, max--sin "Ol.mi,)dx

The value of sin 71,is found from figure 5-9(a) to be

= _-x
sin "Or [(_:_x) 2 + D2] t/,

and, solving now for Qa, 1, gives

Qa., = 0.652 o-/'24 -o (x 2- 2xL + L, + D 2) ,/z t- (x 2+ D2 ) 11, dx

= 0.652 o-T| [ (L= + D,)'/'--D]

The net energy gained by surface 1, Qa., - Q,. 1, divided by the energy

emitted by surface 2 is a measure of the efficiency of a surface as a
directional absorber. For surface 1 being diffuse, this ratio is

Q.,t-Q.,, 0.652[ ]=-,_ttru..= o.TI L = -"7-- ( 1 + 12) '/' -- 1 -- r_T-!l

I,I

.

.__

Ratioof surface

Directional surface temperatures,
.... Diffuse surface (TILT2F.

• 0

LO

• Ol .1 1 1O 100

Plate width to spacing ratio, / - LID

FIcus£ 5--10. - Effect of directional emissivity on absorption efficiency of surface.
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where l = L/D.

The analysis for surface 1, being a directional (grooved) surface,
will now he carried out. The emitted energy from 1 is the same as that

for the diffuse surface since both have the same hemispherical emis-

sivity. The energy absorbed by the grooved surface is

cos 2 _ d'_dx
2 J_-o j _,..,t.

2 A--o , (sin_, cos_,+m)
dx

0.830 _r_ r '_ f. O(L--x)
"4 J_o L(x2--2xL+L_+D 2)

4- tan-t

Mi-- m.

xD

x=+ D _

0.830 o'T_L L
Q" ' ffi 2 tan-l-D

The absorption efficiency _ of the directional surface is then

_ 0.830 [ T! "_*
._dirtet_Mal --''-_

tan-' l-0.652.
\

The absorption efficiencies - of the grooved and diffuse surfaces are
plotted in figure 5-10 as a function of l with (TJT2) 4 as a parameter.
It is seen that _. for the directional surface is higher than that for the
diffuse surface for all values of l, indicating that the directional surface

will always be a more efficient absorber in this configuration. As l ap-

proaches zero, the configuration approaches that of infinite elemental
strips, and emission from surface 1 becomes much larger than the ab-

sorption from surface 2. Thus, -_ and "----_rte,o_ are nearly equal

since the surfaces always emit the same amount. As I approaches in-

finity, the configuration approaches infinite parallel plates for which
directional effects are lost. Again, the _= becomes equal for the two

different surface conditions. At intermediate values of l, a 10-percent
difference in absorption efficiency appears attainable.
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The effects of directional properties on the local heat loss can be a

considerable factor in many geometries. In figure 5-11, a number of

L/'"

.80

Oo/X• 2/3; aolX• 10 "_Bidirectional:
Oo/_, 113;,adk " 5 _ ^..,,f_ m
0o/;_ 1115;,;o/X- I J" _ ",'r.-"

l t I I ,I
.Z .4 .6 .8 1.0

Distance from vertex, xlL

FIGURE 5--11.-Local radiative energy loss from surface of isothermal groove cavity. (Hem-

ispherical emissivity of surface, 0.1.)

assumed directional distributions of reflectivity are examined for their
influence on the local heat loss from the walls of an infinitely long

groove cavity. The results are taken from reference 12 where, for com-
parison, the curves were gathered from original work and from diverse
sources (refs. 13, 14, 16, and 17). The walls of the groove are at 90° to

each other, and the surface emissivity distributions are aLl normalized

to give a hemispherical emissivity of 0.1. Curves are presented for dif-

fuse reflectivity p, specular reflectivity assumed independent of incident
angle p;, specular reflectivity dependent upon incident angle p_(8)

based upon electromagnetic theory, and three distributions of bidirec-

tional reflectivity p"(3,,_8). The bidirectional distributions are based
on the work of Beekmann and Spizzichino (ref. 18) for rough surfaces

having various combinations of root-mean-square optical surface rough-

ness amplitude to radiation wavelength ratio o'o/k and roughness auto-
correlation distance to radiation wavelength ratio ao/X.
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Note that the results shown in figure 5-11 for the simple specular
and diffuse models do not provide upper and lower limits to all the
solutions as is sometimes claimed.

5.6 SURFACES WITH DIRECTIONALLY AND SPECTRALLY DEPENDENT
PROPERTIES

The general case of radiative transfer in enclosures with surfaces
having temperature-dependent radiative properties that depend on both

wavelength and direction is a most complex and difficult one to treat
fully. Closed-form solution of such problems is not possible unless
many restrictive assumptions are introduced. When such problems
must be treated, numerical techniques are necessary. The Monte

Carlo method is a Likely candidate, and example applications of the

method to simple directional spectral surfaces is made in chapter 6.

Toor (ref. 13) has studied radiation interchange by the Monte Carlo

method for a variety of simply arranged surfaces with directional

properties.
In this section, the general integral equations for radiation in such

systems are formulated, and one considerably simplified example

problem is carried out. The procedure is a combination of the previously

considered diffuse-spectral and directional-gray analyses. The equa-

tions will be formulated at one wavelength as in section 5.3 and will
also be formulated in terms of intensities as in section 5.5. In this

manner, both spectral and directional effects can be accounted for.
For simplicity, the interaction between only two plane surfaces will
be treated. This treatment can then be generalized to a multisurface

enclosure as has been done for gray surfaces in chapter 3.
Consider an element d.41 of surface ,41 in the x-y plane as shown in

figure 5-12. The surface is isothermal and has directional spectral

properties. Consider the spectral radiation intensity outgoing from d.dl

in direction (8,, 1, 0,, 1) by means of both emission and reflection. The

spectral intensity emitted by rid1 in direction (8,, 1, 0,. 1) is

i'_e,i(X,_,.l, O,.,)=e'^.l(X,/3,,1; O,.i)i'_.l(X) (5-23)

These quantities are also functions of TI, but this designation is omitted

to simplify the notation somewhat. The intensity reflected from dAt
into direction (/3,, 1, 0,. 1) results from the intensity incident from Az.

It would be desirable to have an expression for the intensity incident
within solid angle dtol; then by integrating over all such daJ1, the incident

radiation from all of At would be accounted for. If the incident intensity
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!

T2,'L, 24_,_2,82,T2)

Normal to clA

z

S

FlGumg 5-12.- Interchange between sudaces havfng directional-specular properties. (En-

richment at zero temperature.)

within dot is called i' t(k, #,, Or) then the energy reflected from d,4tki,

into direction (fir, l, 8r. 1) is

iL..,(x, !_,.,, o,._) = fa pi.,(_,, t3_.,, o,.,, /3,, o,)i£,.,(x, p_, o,)
1'

cos _tdaJ1 (5-24)

The surroundings are taken to be at zero temperature so that the only

incident intensity is that from ,42. The spectral intensity outgoing from

d/it in direction (/g,. t, 0r, 1) is then the sum of emitted and reflected

quantities

iL,. ,(x, P,. t, Or.1)= i',,. I(X,_,,,, Or.,)+ i'_,.,(X, _r.,, 0,. ,)

*s

=<,, (x, ,8,.,, o,.,)z_.,(x)

+ f.t p;'' ,(g. tBr, ,. Or, ,. jS,. Ot)i'>., ,(X, 13,. 0,) cos 8, do,
I

(5-25)
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In equation (5-25) the i_., i(_,, _, 01) results from the outgoing intensity

i_,.z(k, 8",, 0_) from surface 2. This outgoing intensity is composed of
both emitted energy and energy incident from 1 that is reflected. The

energy leaving dA., that reaches dAi is

i_o. =(X, 82, 02k/A_ cos/3= d.d, cos 81/S 2

In terms of the incident intensity i_. 1(_., 81, 01), the incident energy in

dtol is

i_,,. 1(_,81, 01)d,4, cos 81 doJi or i_t ' , (k,_l, Oi)d,At cosS! dA._ cos82/S 2

Thus,

.t

iL., (_,, /31, 01)= t_, ,(_,, 8,, 0_) (5-26)

Substituting equation (5-26) into equation (5-25) gives

t_. I(_-, 8r. _, 0r, I) = ex. 1(),, 8,, 1, 0r. _)t_. ,(_,)

+ p:.,,x, ,,o,,, o,)i'_. 2(k, 8", 02) cos 81 doJ,
(5-27a)

Similarly for surface 2

•t n "t

t_, 2()t, 8,. 2, 0,. _) = e_, 2(X, _,. 2, 0,. 2)t_,, z(X)

+ f_ p_.z(_t,8,,2,0,,_,_,O:)i_.,lX, St Ol)cos82dar_ (5-27b)
I

Equations (5-27) are both in terms of outgoing intensities. Thus, they
form a set of simultaneous integral equations for i_,.1 and i_.2. An

iterative numerical solution technique would generally be required.

The radiative properties and temperature can, in general, vary across
each surface.

When the i_,,, and i_,. 2 have been obtained, the total energy can be
determined that must be supplied to each surface element to maintain

the specified surface temperature. The total energy supplied is the dif-
ference between the total emitted energy Q_ and the total absorbed

energy Q°. For element dA,,

323-0030--69--12
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f ao,
d _-OJA I.

0 t

cos/31 cos _ dA., dk (5-28)
S2

where el is the hemispherical total emissivity of surface 1.

If dQ_(x, y) rather than TI (x, y) is specified, then/'1 (x, y) must be
determined, and the solutions can be quite tedious. A temperature
distribution must be assumed for each surface, and the set of equations

of the form of equations (5-27) solved to find i _o at each point. These out-

going intensities are substituted into equation (5-28), and the computed

dQt from equation (5-28) is compared to the given values. Adjustments
are then made in the assumed distribution of temperatures, and this

procedure is repeated until agreement between given and computed

dQt (x, y) is attained.

EXAMPLE 5--7: A small area element dAt is placed on the axis of

and parallel to a black circular disk as shown in figure 5-13. The element

is at temperature Tt and the disk is at T2. The environment is at T= 0.
The element has a directional spectral emissivity that is independent

of 0 and can be approximated'by the expression

• _,.t(k, ill, Tt) _0.8 cos fit(1 --e -c'lxr')

where Cz is one of the constants in Planck's spectral energy distri-

bution. (As will be evident, this distribution was chosen to simplify

this example.) Find the energy dQ_ added to dAt in order to maintain it
at T_. Assume that T_ is close to T2.

Equation (5-28) can be employed immediately because i'xo,2 is known

from the specification of A2 being a black surface. The emitted energy

from dA, is given by

Now insert the expressions for e_,,1, i_. l ((eq. 2-11a) of Vol. I), and
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_t.rt.,_. l_x.lhortl

Ftcual: 5--13.-Energy exchange involving directiouM-spectral surface element. (Environ-

ment at zero temperature.)

daJ,= sin/3,dfl,dO, toobtain

dQ_.,ffiO.8d.4,fx[of, Cos flt(l_e_C_r,) 2C,kS(ec,/xr,_ I)

x cos 8, sin 8, dE, dot dk

_O.Sdd,fx[o ( f. eos2 fl, sin fl, dB, dO, ) 2C,hSeC,lxr------_' dk

Carrying out the integral over the hemisphere gives

dQe.,= 0.8dd, (_) fo® 2C,hsec_t_l"t
dX

Use the transformation _= C,/kT,

fO _
Then using the relation _e-_ dg-----3! (ref. 19) gives



174 THERMAL RADIATION HEAT TRANSFER

dQ¢,, =--6.4 d.41 C:_r C"_2

But the Stefan-Boltzmann constant ¢r=2C,cr_/15C_ so that

48 o'T_ d.4_

The energy absorbed by dd_ is

dO.. l d,41 a;,(_,, ¢1, O0 _o,2(X, ¢2, 0z) $2 dk
0 s

By using Kirchhoff's law, the directional spectral absorptivity and emis-

sivity can be equated without restriction. Then, for d.4: taken as a ring

element, the solid angle cos/32 dAz/S 2 can be written as 2_r sin/31 dill.
This is used to write the absorbed energy as

dQa, l='2rr(0.8),d/ll/x_ f_' "a'_(cosZ fit sin 81 d[3t)i'_,2 (1--e-C'lXr')dk
0 J_l=O

_--l.6_r d.4, e°s-£E_ 2Cffl-e"C'lxn)
3 o Jo AS(ecstxr'- 1) dk

3.2rrC, ddl [1 Dz .If0® 1-e -c'_xr'

If the approximation is invoked that TI is close in value to T2, the inte-

gration over _. can be carried out with the following result:

1 3;2] o'T_ d..4,Q_,,,ffi _[1 (1 + r')

where rffiR/D. Finally, the heat added to dA, to maintain it at T_ is given

by

dQl=dQe,,-dQa,,-_-7 T?-T_ 1 dA,

Even for this illustrative example, it was difficult to construct a realistic
analytical function for Et that could be integrated in closed form over

both angle and wavelength. Almost invariably, it is necessary to use
numerical methods to obtain solutions to problems of this type.
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5.7 CONCLUDING REMARKS

Although the formulation of radiation exchange problems involving

directional and/or spectral property effects is not conceptually difiicult,

it is often very tedious to obtain solutions to the resulting integral

equations. To simplify the equations, it is necessary to invoke many

assumptions and approximations. The approximations that can be

invoked with validity vary from case to case and are so numerous that

they have not been discussed in any depth. Numerical techniques of

many types can be used for directional spectral problems since closed-

form analytical solutions rarely can be obtained. The number and

range of conditions and parameters in these problems preclude the

specification of any one numerical technique as being the best. As

more and more interchange problems of this type are investigated,

perhaps the most valuable techniques will emerge from the present

unresolved jungle of individual solutions. One technique is the Monte

Carlo method, which is the subject of the next chapter.

REFERENCES

I. BREENE, ROBEWr G., JR.: The Shift and Shape of S vectral Lines. Pergamon Press,

1961, p. 52.
2. BItANSTE'I'rzlt, J. Rosl_lrr: Radiant Heat Transfer Between Nongray Parallel Plates

of Tungsten. NASA TN D-1088, 1961.
3. EcKzwr, E. R. G.; AND Dltxg_, RosElrr M. JR.: Heat and Mass Transfer. Second ed.,

McGraw-HiU Book Co., Inc., 1959, p. 375.

4. DUNKLE, R. V.; AND BEVANS, J. T.: Part 3. A Method for Solving Multinode Networks

and a Comparison of the Band Energy and Gray Radiation Approximations. J. Heat
Transfer, vol. 82, no. 1, Feb. 1960, pp. 14,-19.

5. LOVE, TOM J.; AND GILBERT, JOEL S.: Experimental Study of Radiative Heat Transfer
Between Parallel Plates. Oklahoma Univ. (ARL-66-0103, DDC No. AD--643307),

June 1966.

6. GOODMAN, STANLEY: Radiant-Heat Transfer Between Nongray Parallel Plates.
J. Res. Nat'l Bur. Standards, vol. 58, no. 1, Jan. 1957, pp. 37-40.

7. ROLLING, R. E.; AND TIEN, C. L.: Radiant Heat Transfer for Nongray Metallic Surfaces

at Low Temperatures. Paper No. 67-335, AIAA, Apr. 1967.
8. BoBco, R. P.; ALLEN, C. E.; AND OTHMER, P. W.: Local Radiation Equilibrium Tem-

peratures in Semigray Enclosures. J. Spacecraft Rockets, vol. 4, no. 8, Aug. 1967,

pp. 1076--1082.
9. PLAMONDON, J. A.; AND LANDt_M, C. S.: Radiant Heat Transfer from Nongray Sur-

faces with External Radiation. Thermophysics and Temperature Control of Space-

craft and Entry Vehicles. VoL 18 of Progress in Astronautics and Aeronautics.
G. B. Heller, ed., Academic Press, 1966, pp. 173--197.

10. BEVANS, J. T.; _D EDWARDS, D. IC: Radiation Exchange in an Enclosure with Direc-
tional Wall Properties. J. Heat Transfer, vol. 87, no. 3, Aug. 1965, pp. 388-396.

11. HEmNG, R. G.: Theoretical Study of Radiant Heat Exchange for Non-Gray Non-Diffuse

Surfaces in a Space Environment. Rep. No. ME-TN-036-I (NASA CR-816,53),

Illinois Univ., Sept. 1966.



176 THERMAL RADIATION HEAT TRANSFER

12. VISKAN'rA, RAYMOND; SCHORNHORST, JAMES R.; AND TOOR, JASWANT S.: Analysis

and Experiment of Radiant Heat Exchange Between Simply Arranged Surfaces.

Purdue Univ. (AFFDL-TR-67-94, DDC no. AD-655335), June 1967.

13. Tooa, J. S.: Radiant Heat Transfer Analysis Among Surfaces Having Direction De-

pendent Properties by the Monte Carlo Method. M.S. thesis, Purdue University, 1967.

14. HZ_NG, R. G.: Radiative Heat Exchange Between Specularly Reflecting Surfaces With

Direction-Dependent Properties. Proceedings of the Third International Heat Trans-
fer Conference, Chicago, I11., Aug. 7-12, 1966. Vol. 5. AIChE, 1966, pp. 200-206.

15. HOWELL, JOHN R.; AND PgRLMtrrTER, MORRIS: Directional Behavior of Emitted and

Reflected Radiant Energy From a Specular, Gray, Asymmetric Groove. NASA

"IN D-1874, 1963.

16. SpaRRow, E. M.; GRgC,G, J. L.; SZgL, J. V.; AND MANOS, P.: Analysis, Results, and

Interpretation for Radiation Between Some Simply-Arranged Gray Surfaces. J. Heat

Transfer, voL 83, no. 2, May 1961, pp. 207-214.

17. ECKEBx, E. R. G.; AND SP_maow, E. M.: Radiative Heat Exchange Between Surfaces

With Specular Reflection. Int. J. Heat Mass Transfer, Voi. 3. No. 1, 1961. pp. 42-54.
18. BECIO_'.ANN, PETER; AND SPIZZICHINO, ANDRI_: The Scattering of Electromagnetic

Waves From Rough Surfaces. Macmillan Co., 1963.
19. DWIGHT, Hglmgwr B.: Tables of Integrals and Other Mathematical Data. Fourth ed.,

Macmillan Co., 1961, p. 230.



Chapter 6. The Monte Carlo Approach to Radiant

Interchange Problems

6.1 INTRODUCTION

In chapter 5 it was found that the enclosure theory analysis became
very complex when directional and spectral surface property variations

were accounted for. An alternate approach that can deal with these
complexities of radiation interchange is presented in this chapter; this

approach is the Monte Carlo method.
Since Monte Carlo is a statistical numerical method, it is first neces-

sary to discuss some of the concepts of statistical theory. Then the basic

procedure is outlined with regard to radiative exchange; to demonstrate
the method, two example problems are formulated. Because the use of
Monte Carlo requires a digital computer, complete example problem

solutions are not given. Only the straighforward Monte Carlo approach
will be presented. The many refinements that can shorten computation

time by increasing accuracy will only be mentioned in passing.
A general view of the radiation heat transfer problems solved in the

literature by Monte Carlo will be given. This will further show how the

method can be utilized and will provide a source for available techniques

that have been developed. Much of the material presented here is taken
from reference 1.

6.1.1 Definition of Monte Carlo

Herman Kahn (ref. 2) has given the following definition of the Monte
Carlo method which seems to incorporate the salient ideas: "The ex-

pected score of a player in any reasonable game of chance, however

complicated, can in principle be estimated by averaging the results of
a large number of plays of the game. Such estimation can be rendered

more efficient by various devices which replace the game with another
known to have the same expected score. The new game may lead to a
more efficient estimate by being less erratic, that is, having a score of

lower variance or by being cheaper to play with the equipment on hand.

There are obviously many problems about probability that can be viewed
as problems of calculating the expected score of a game. Still more,

there are problems that do not concern probability but are none the less

equivalent for some purposes to the calculation of an expected score.
The Monte Carlo method refers simply to the exploitation of these
remarks."

177
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This definition also provides a good outline for use of the method.

Indeed, what must be done for a specific problem is to set up a game or

model that obeys the same behavior and hence is expected to produce
the same outcome as the physical problem which the model simulates:

make the game as simple and fast to play as possible; then play the game
many times and find the average outcome. After some remarks on the

history of the method and on the approach being taken here to sum-
marize and outline it, this formalism will be applied to problems in
radiative heat transfer.

6.1.2 History

The history of "experimental mathematics" can be traced quite

far into the past. Hammersley and Handscomb (ref. 3) give references
to over 300 works dealing with Monte Carlo and closely related material
published over the last six decades. They mention a determination of

the value of ¢r by a mathematical experiment performed some thousands

of years ago (ref. 4). However, the great bulk of the literature has
appeared since 1950.

Many early workers actually carried out numerical experiments

by such means as throwing dice or playing card games many times
over to determine the probability of a given outcome, but useful results

from such methods awaited the unique abilities of high-speed digital
computers. These machines could play simulations of the game at a

high rate and thus compile accurate averages in a reasonable time,
Credit for development of Monte Carlo techniques, as they are

presently used in engineering and science, goes to the extremely com-

petent group of physicists and mathematicians who gathered at Los
Alamos during the early work on nuclear weapons, including especially

John yon Neumann and Stanley Ulam.

6.1.3 General References

Referring to "the" Monte Carlo method is probably meaningless

although such terminology will be applied. Any specific problem more
likely entails "'a" Monte Carlo method, as the label has been placed on a

large class of loosely related techniques. A number of general books

and monographs axe available that detail methods and/or review the

literature. A valuable early outline is given in reference 5, which is the
first work to use the term "Monte Carlo" for the approach being con-

sidered here. For clarity and usefulness, both references 2 and 3 are
valuable, as are the general texts by Cashweli and Everett (ref. 6);

Schreider (ref. 7) (who gives 282 references, many to the foreign Liter-



MONTE CARLO METHOD 179

ature); Brown (ref. 8); and the many excellent papers gathered in the

symposium volume edited by Meyer (ref. 9).

The references cited give mathematical justification for some of the

methods employed in Monte Carlo. Those who cannot sleep withojat

such reassurance are urged to read these works carefully. Here, how-

ever, it is intended to give arguments based on physical foundations,

with emphasis on why the mathematical forms evolve. No attempts to

provide proofs of statistical laws will be made; the standard texts in

statistics carry out these proofs in detail.

Some mention should be made about the machine running time of

Monte Carlo programs. No definitive method of predicting running

time exists for most problems. The time used will depend, of course,

on the machine used, and, perhaps, more strongly on the ability of the

programmer to pick methods and shortcuts that will reduce the burden

on the machine. An example of such a shortcut is the use of special

subroutines for computation of such functions as sine and cosine.

These routines sacrifice some accuracy to a gain in speed. If problem

answers accurate to a few percent are desired, then the use of eight-

place functions from a relatively slow subroutine is a needless luxury,

especially if the subroutine is to be used tens of thousands of times.

Finally, only this paragraph will be devoted to the fruitless argument

as to whether Monte Carlo or some other method is a "better" way of

attacking a given radiation problem. Suppose that a set of integral

equations must be solved simultaneously in order to obtain an analytical

solution to a given physical problem. A Monte Carlo solution of a physical

analog may lead to a lengthy computer run. The question facing the

programmer is then: Is it better to program the solution of the integral

equations by finite difference iterative techniques, with the possibility

that convergence to correct solutions will not be attained because of

round-off errors or instabilities, or by Monte Carlo, which, though long

running, will give the answer sooner or later? In general, there can be no

reply to this question. Only the background and intuition of the individual

researcher can give some clue as to the most likely direction of attack.

It is hoped that the following material will provide a basis for such

decisions.

A

A,B,C,D...

E

F0-_

6.2 SYMBOLS

surface area

constants

exchange factor including direct exchange and all

reflection paths

fraction of total energy emitted by a blackbody in

wavelength range of 0 to _.
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frequency distribution of events occuring at sr
total number of subsets used to compute mean

radiant intensity

lattice indices in square mesh corresponding to

x, y positions, respectively
total number of sample bundles per unit time

individual sample index

probability density function
mean of calculated values of P

energy per unit time
number chosen at random from evenly distributed

set of numbers in range 0 to 1, random number

number of events occurring at some position

temperature

energy carried by sample Monte Carlo bundle

positions in Cartesian coordinate system
radiative surface absorptivity

cone angle
standard deviation defined by eq. (6-15)

indices in computer program, fig. 6-7
radiative surface emissivity

function defined by eq. (6-14)

circumferential angle

wavelength

probable error
variable

Stefan-Boltzmann constant

blackbody
emitted

spectrally dependent
at surface 1 or 2

quantity in one direction
bidirectional quantity

denotes dummy variable

6.3 DETAILS OF 'rile METHOD

6.3.1 The Random Walk

Any reader looking into the background of the material to be presented
here wiU soon encounter the term Markov chain. A Markov chain is sim-
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ply a chain of events occurring in sequence with the condition that the

probability of each succeeding event in the chain is uninfluenced by

prior events. The usual example of this is a totally inebriated gentleman

who begins a walk through a strange city. At each street corner that he

reaches, he becomes confused. In continuing his walk, he chooses com-

pletely at random one of the streets leading from the intersection. In

fact, he may walk up and down the same block several times before he

chances to move off down a new street. The history of his walk is then a

Markov chain, as his decision at any point is not influenced by where he
has been.

Because of the randomness of his choice at each intersection, it might

be possible to simulate a sample walk by constructing a "four-holer";

that is, a roulette wheel with only four positions, each corresponding to

a possible direction. The probability of the gentleman starting at his hotel

bar and reaching any point in the city limits could then be found by simu-

lating a large number of histories, using the four-holer to determine the

direction of the walk at each decision point in each history.

It might he noted that the probability of the man reaching intersection

(l, m) on a square grid representing the city street map is simply

1
P(l, m)ffif_[P(l+ 1, m)+P{l-- 1, m)+P(l, m+ 1)+ P(I, m- 1)]

(6--1)

where the factors in the square bracket are the probabilities of his being

at each of the adjacent four intersections. This is because the probability

of reaching P(l, m) from a given adjacent intersection is one-fourth.

This type of random walk is a convenient model for processes that are

described by Laplace's equation; equation (6-1) is recognized as the

finite difference analog of the Laplace equation.

The probability of a certain occurrence for other processes is usually

not as immediately obvious as is the case for equation (6-1). More often,

the probability of an event must be determined from physical constraints,

and then the decision as to what event will occur is made on the basis

of this probability. Some of the basic methods of choosing an event from

a known probability distribution of events will now be examined. Also,

means of constructing these distributions will be discussed.

6.3.2 Choosing From Probability Distributions

Consider a very poor archer firing arrows at a target with an outer

radius of 10 feet. After firing many arrows, the number of arrows F(_r)
that are found to have struck the target within a small radius increment

A_ about some radius _: can be represented by a histogram of the fre-

quency function f(_)=F(_)/A_. A smooth curve can then be passed
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FlGtrl_ 6-1.- Frequency distributionof arrows at various targetradii.

through the histogram to give a continuous frequency distribution, perhaps

similar to that of figure 6-1. What is now needed is a method for simu-

lating further shots. This method should assign an expected radius

on the target to each of a group of succeeding arrows. In addition, the

distribution of _ values should correspond to the frequency distribution

that the archer has previously fired as shown in figure 6-1. (It is assumed

that all his arrows have hit somewhere on the target.)

This situation is analogous to that encountered in many Monte Carlo

processes. The distribution of values that occurs in a given physical

process is known, and a method of assigning values to individual samples

is desired so that the distribution of values for all the samples will agree

with the required distribution. In radiant heat transfer, for example, it

is known that the distribution with wavelength of the spectral energy

emitted by a blackbody must follow the Planek spectral emission curve.

How are individual energy "bundles" of radiation each assigned a wave-

length so that, after a large number of bundles are emitted from a black-

body, the distribution of emitted energy .is indeed Planckian?

In addition, for a Markov process, the values at each step must be

assigned in a random manner so that each decision in the chain is

independent.

Following the archer's progress will show how this is done. The fre-

quency curve given in figure 6-1 can, in this case, be approximated by
the analytical expression
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f(_:) = _:2 (6-2)

in the interval 0 _ _:_ 10, andf(_:)=0 elsewhere because all the arrows

struck the target. Equation (6-2) is normalized by dividing by the area
under the frequency curve (i.e., the total number of arrows) to obtain

P(_) = f(_:) =

to f(_)d_: 1000

(6-3)

If the frequency with which arrows have struck the target radii is taken
as the basis for estimating the locations the next set will strike, then

the probability density function defined by equation (6-3) is the average
distribution that must be satisfied by the _: values determined by the

simulation scheme. The probability density function is plotted in figure

6-2 and is interpreted physically as the proportion of values (arrows)

that lie in the region A_ around _:.

1.O

.8

.i

-- Rejected iL
_ values-_ tif!}

-- \, Accel_l ___\ va_,_,

 ir-,
Z 4 6 8 10

Radial positionon target,

FIGURE 6-2.- Probability density function of arrows on target.

To determine _: values, the simulation scheme can proceed as follows:
Choose two random numbers, RA and R,, from a large set of numbers

evenly distributed in the range 0 to 1. (How these numbers are chosen in
a practical calculation is discussed in section 6.3.3.) The two random

numbers are then used to select a point (P(¢), _:) in figure 6-2 by setting

P(_:)=R_ and ¢--(_:,_z-¢m,,)Ra= 10Ra. This value of P(_:) is then
compared to the value of P(¢) computed at ¢ from equation (6-3). If

the randomly selected value lies above the computed value of P(sr),
then the randomly selected value of _: is rejected, and two new random

numbers are selected. Otherwise, the value of ¢ that has been found
is listed as the location that the arrow will strike. Referring again to

figure 6-2, it is seen that such a procedure assures that the correct

fraction of _: values selected for use will lie in each increment As_ after a
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large number of completely random selections of (P(_), _:) is made.

The difficulty with such an event-choosing procedure is that in some
cases a large portion of the _: values may be rejected because they lle

above the P(_) curve. A more efficient method for choosing _ is therefore
desirable.

One such method is to integrate the probability density function

P(s_) using the general relation

R(_)-=- f_® P(_*)d_* (6-4)

where R(_r) can take on values only in the range 0 to 1 because the
integral under the entire P(s _) curve is unity according to equation (6-3).

Equation (6-4) is the general definition of the cumulative distribution

function. A plot of R against _: from equation (6-4) shows the probability
of an event occurring in the range -zo to _:. For the method given here,
the function R is taken to be a random number; each value of _ is then

obtained by choosing an R value at random and using the functional
relation R(_:) to determine the corresponding value of _:. To show that

the probability density of _ formed in this way corresponds to the
required P(_:), the probability density function of figure 6-2 can be used

as an illustrative example. Inserting the example P(_) of equation (6-3)
into equation (6-4) and noting that P(_) = 0 for -_ < _r< 0 give

fo_R = P(_*)d_*= _ 0 <_ R _ 1 (6-5)
1000

Equation (6--5) is shown plotted in figure 6-3.

Now it will be shown that choosing R at random and determining a

corresponding value of _: from equation (6-5) is equivalent to taking the
derivative of the cumulative distribution function and that this derivative

is, by examination of equations (6-5) and (6-3), simply P(_:). Divide the

range of _: into a number of equal increments A_. Suppose that M values
of R are now chosen in the range 0 to 1 and that these M values are

chosen at equal intervals along R. There will be M values of _: which

correspond to these M values of R. The fraction of the M values of _:
which occurs per given increment A_ is then MadM = AR which gives

MAc

/6--6)
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FIGURE6-3.--Cumulative distribution of arrows on target.
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The quantity _xR/_,_ approaches dRIdf if a large enough value is used

for M and small increments _ are examined. But dR/d_ can be seen

from equations (6--5) and (6--3) to be simply P(_); therefore, by obtain-

ing values of _: as described preceding equation (6-5), the required

probability distribution is indeed generated.

Often physical problems arise in which the frequency distribution

depends on more than one variable. For example, if the archer discussed

previously suffered from astigmatism, then a dependence on circum-

ferential angle 0 might appear in the distribution of arrows on the target

in addition to the dependence on radius. If the interdependence of the

variables is such that the frequency distribution can be factored into a

product form, then the following can be written:

(6-7)

and values of P(_:) and P(O) can be found by integrating out each

variable in turn to give
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f f(e,o, o f(e>f,[Tf o, o
81n_n

P(_) = r_,,,.._ ro,,,_ =

and similarly,

f _mo.r

_,,. f(g, O)d_ f(O)

,.(o, f;'.,7 r
mi_ J Omin

(6-8)

(6-9)

The methods given previously in this section are used to evaluate

and O independently of one another after choosing two random
numbers.

If fl_:, O) cannot be placed in the form of equation (6-7) (i.e., if there
are no independent 8In and h(O)), then it can be shown (refs. 2 and 7)

that _ and O values can be determined by choosing two random numbers
Re and Us. Note that

P(_, O) fe,_,= f(_, O)f_mo.r f(_, O)dOd_
Jdmla J Omin

Then _ and 0 are found from the equations

Re= f i.. f o,,_=P(_*, 0)dO d_*
- J Omta

(6-10)

and

Re = P(O*, _--fixed) dO* (6-11)
,al

where _: in equation (6-11)is that value obtained from equation (6-10).

This procedure may be extended to any number of variables. Equations

(6-10) and (6-11) define the marginal and conditional distributions of

P(6, 0), respectively.
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6.3.3 Random Numbers

6.3.3.1 Definition of random numbers.-Formally, a random number
can be taken here as a number chosen without sequence from a large

set of numbers spaced at equivalued intervals in the range 0 to 1. If the

numbers O, 0.01, 0.02, 0.03,.... 0.99, 1.00 are placed on slips of paper

and then the jumbled slips are placed in a hat, there would be fair as-
surance that, if a few numbers are picked, they will be random numbers.

If many choices are to be made, then perhaps smaller intervals (more

slips) should be used; after it is drawn, each sllp should be replaced and
randomly mixed in the hat.

For a typical computer problem, random numbers might be needed for
10s or more decisions. It is desirable that the numbers be obtained in

a rapid way and that the numbers chosen be truly random.

6.3.3.2 How random numbers are generated.-On the modern digital
computer, it is impractical to fit a mechanical arm and an optical scanner

to choose and interpret slips pulled from a hat. To give truly random

numbers, one possibility would be to sample a truly random process.
Such phenomena as noise in an electronic circuit or radioactive decay

particle counts per unit time have been tried, but in the main they are

found to be too slow for direct computer linkage.

A second means is to obtain or generate tables of random numbers

(refs. 10 and 11) perhaps by one of the processes mentioned previously,

and then enter these tables in the computer memory. This allows rapid
access to random numbers, but for complex problems requiring a large

quantity of random numbers, the required storage space becomes pro-

hibitive. This method has been widely used, however, when a modest
problem is to be solved.

The most widely practiced method at present for obtaining random
numbers for a digital computer is a pseudorandom number generator.

This is simply a subroutine that exploits the apparent randomness of
groups of digits in large numbers. One simple example of such a routine

is to take an 8-digit number, square it, and then choose the middle 8
digits of the resulting 16-digit number as the required random number.

When a new random number is needed, the previous random number is

squared, and the new random numbers is taken as the middle 8 digits
of the result. This process is said by Schreider (ref. 7) to degenerate

after a few thousand cycles by propagating to an all-zero number.

A more satisfactory routine used at the Lewis Research Center of

NASA is based on suggestions in reference 12. Here a random number
is generated by taking the low order 36 bits of the product R___K,

where K--5 _5 and R_-1 is the previously computed random number.
The subroutine is started by taking Ro=l, or the programmer may

323-0O3 0-69--13
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give Ro an arbitrary value. By always starting a given program with

the same Ro, it is possible to check solutions through step-by-step

tracing of a few histories.

6.3.3.3 How the numbers are made sufftciently random.-The fact

that such subroutines generate pseudorandom numbers immediately

raises a danger flag. How can it be established that such pseudorandom-

ness is sufficiently random for the problem being treated? Does the se-

quence repeat; if so, after how many numbers? Certain standard tests

exist that give partial answers to these questions, and a full discussion

of them is given in references 3, 12, and 13. None of these tests is

sufficient to establish randomness, although passage of them is neces-

sary. Kendall and Smith (ref. 13) describe four such tests. The names they

ascribe give the flavor of the methods: the frequency test, the serial test.

the poker test, and the gap test. These tests are described as "... useful

and searching. They are, however, not sufficient .... "

Perhaps the safest course to follow is to obtain a standard subroutine

whose properties have been established by such tests and use it only

within its proven limits. The applicability of a given pseudorandom

number generator can be checked to some extent by generating the

mean of some known distributions appearing in the problem at hand.

and comparing the results with analytically determined means.

6.3.4 Evaluation of Error

Because the solutions obtained by Monte Carlo are averages over the

results of a number of individual samples, they will, in general, contain

fluctuations about a mean value. As in any process of this type, the mean

can be more accurately determined by increasing the number of values

used in determining the mean. Although it is not possible to ascribe a

100-percent confidence in the value obtained, such confidence can be

approached as closely as desired if the budget for computer time can

stand the strain. More generally, some ad hoc rules of economy and an

estimate of desired accuracy to a given problem can be applied, and

solutions can be obtained by trading off within these limits.

To establish the accuracy of the solutions, one of the foUowing tests

can be applied. For example, suppose it is desired to know the proba-

bility of the randomly staggering attendee of an engineering convention

(who was discussed in section 6.3.1) reaching a certain bar at the city

limits. To determine his success exactly, an infinite number of hypotheti-

cal engineers would have to be followed and the probability P(l, m) of

reacaing the boundary point (l, m) would be determined as

p(l,m)=[ S(l'm)]
L N" "J._-,, _6--12)
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where S(I, m)/N is the number of samples S(l, m) reaching the boundary

point divided by the total number of samples N. Obviously, following an
infinite number of samples would not be economical, and a probability
would be computed based on some finite number of samples N, of order

perhaps 102 to 10s. Then an estimate is needed of the error/_ involved

in approximating infinity by these relatively small sample sizes.

For a sample size greater than about N= 20, it is found (refs. 3 and 7),

from application of the "central limit theorem" and the relations govern-

ing normal probability distributions, that the following relation holds

whenever the samples S in question can be considered to leave a source
and either reach a scoring position with probability P or not reach it with

probability 1-P. The probability that the average S(l, re)IN for finite N
differs by less than some value/z from IS(l, m)/Nlv-,, is given by

where

l 2 f,,I_

= elf (nlV ) (6-13)

'0 '==,u, (6-14)
1--

Compilations of the error function (erf) are given in many standard ref-
erence tables (refs. 14 and 15).

In many problems, such an error estimation procedure cannot be

applied because the samples do not originate from a single source. For
example, the radiative energy flux at a point on the boundary of an en-

closure may depend on the energy arriving from many sources. For
such situations, the most straightforward way of estimating the error in

a result (such as the error in radiative heat flux at a point) is to subdivide
the calculation of the desired statistical mean result into a group of I

submeans. The "central limit theorem" then applies. This theorem states
that the statistical fluctuations in the submeans are distributed in a

normal or Gaussian distribution about the overall mean. For such a dis-

tribution, a measure of the fluctuations in the means can be calculated.

This measure is called the variance. For example, if 200 samples are
examined, a mean result/5 is calculated on the basis of 200 samples,

and 20 submeans P,, P2 .... Pi of 10 samples each are calculated.

Then the variance y_ of the mean solution/5 is given by

, _ , [÷= I---[E(P,-P>,I=----- ""V'.j ,_, ,., (6-,s>
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This variance is an estimate of the mean square deviation of the sample
mean P from the true mean, where the true mean would be obtained by

using an infinite number of samples. From the properties of the normal
frequency distribution, which the fluctuations in the results computed

by Monte Carlo will in general follow, it is shown in most texts on sta-
tistics that the probability of the sample mean/3 lying within "+"y of the

true mean is about 68 percent, of lying within -4-2y is about 95 percent,

and of lying within "4-3y is 99.7 percent.

Another measure of the statistical fluctuations in the mean is %

the standard deviation. Because T is given by the square root of equation
(6-15), it is evident that in order to reduce "f by haft, the number of

samples which are used in computing the results must be quadrupled

(thereby quadrupling I for constant submean size). This probably means
quadrupling the computer time involved unless the term in brackets can
somehow be reduced by decreasing the variance (scatter) of the individual

submeans. Much time and ingenuity have been expended in attempts at

the latter, under such labels as "stratified sampling," "splitting," and

"importance sampling." These and other variance-reducing tech-

niques are discussed in references 3 and 7. The savings in computer
time available from application of these techniques is abundant reward
for their study, and the reader who intends to use Monte Carlo for any

problem of significant complexity is urged to apply them.

6.4 APPUCATION TO THERMAL RADIATIVE TRANSFER

6.4.1 Introduction

As discussed in chapters 4 and 5, the formalation of radiation exchange

heat balances in enclosures leads to integral equations for the unknown
surface temperature or heat flux distributions. Integral equations

also result when considering radiation exchange within a radiating
medium such as a gas. These equations can be quite difficult to solve

and are a consequence of using a "macroscopic" viewpoint when de-

riving the heat flow quantities. By invoking a probabilistic model of
the radiative exchange process and applying Monte Carlo sampling

techniques, it is possible to utilize a "semimacroseopic ''3 approach

and avoid many of the difficulties inherent in the averaging processes

of the usual integral equation formulations. In this way, actions of small
parts of the total energy can be examined on an individual basis, rather
than attempting to solve simultaneously for the entire behavior of all

the energy involved. A microscopic type of model for the radiative ex-

change process will be examined; then the solution of two examples
wiU be outlined.

= Or, perhapu, "sem/mievotcopic."
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6.4.2 Model of the Radiative Exchange Process

In engineering radiation calculations, the usual quantities of interest

are the local temperatures and energy fluxes. It seems reasonable to

model the radiative exchange process by following the progress of dis-
crete amounts ("bundles") of energy since local energy flux is then

easily computed as the number of these energy "bundles" arriving per

unit area and time at some position. The obvious bundle to visualize is
the photon, but the photon has a disadvantage as a basis for a model;

its energy depends on its wavelength, which would introduce a needless

complication. Therefore, a model particle is devised that is more con-
venient. This is the "photon bundle," which is a bundle carrying a given

amount of energy w; it can be thought of as a group of photons bound

together. For spectral problems where the wavelength of the bundle is

specified, enough photons of that wavelength are grouped together to
make the energy of the bundle equal to w.

By assigning equal energies to all photon bundles, local energy flux

is computed by counting the number of bundles arriving at a position of

interest per unit time and per unit area and multiplying by the energy of
the bundle. The bundle paths and histories are computed by the Monte

Carlo method as will now be demonstrated by an example problem.

6.4.3 Sample Problem

For an example, look at a simple problem outlined in reference 16
and examine the energy radiated from element dd_ at temperature 7"1

that is absorbed by an infinite plane dz at temperature 7z =ffi0 (see fig.
6-4). Let element dA_ have emissivity

t_., _t_,, ,(x,/3,, r,) (6-16)

let area 2 have emissivity

' - ' _(x,/3_,r2) (6-17)

and assume only that the emissivity of both surfaces is independent of
circumferential angle 0.

For surface element dA_, the total emitted energy per unit time is

dQ,,,=e,(T,)o'T_ dA, (6-18)

where e_(T_) is the hemispherical total emissivity given in this case by
(eq. (3--6a) of Vol. [)
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]o_ 71_e'_,t (k, ill, Tt)i'_, i(k, Tt)cos fdoJdk
Cl(Tt) (6-19)

where i_, _(h, q'_)is the Planck spectral distribution of blackbody radiant
intensity at Tx.

If it is assumed that doe. _, the total energy emitted per unit time

by d.4t, is composed of N energy bundles emitted per unit time, then
the energy assigned to each bundle is

(6-2o)
N

To determine the energy radiated from element ddl that is absorbed

by surface A.z, follow N bundles of energy after their emission from
ddt and determine the number S., absorbed at A.,. If the energy re-

flected from A.z back to ddt and then rereflected to .4z is neglected, the

energy transferred per unit time from dA_ to A., will be

e, ( T, )o'T1d,4 t $2
dQi -,,b,o,._d _, z ffi wS._= N (6-21)

The next question is how to determine the path direction and wave-
length that is assigned to each bundle. This must be done in such a

way that the directions and wavelengths of the N bundles conform to
the constraints given by the emissivity of the surface and the laws

governing radiative processes. For example, if wavelengths are as-
signed to N bundles, the spectral distribution of emitted energy generated
by the Monte Carlo process (comprised of the energy wN_,AX for discrete

intervals Ah) must closely approximate the spectrum of the actual

emitted energy (plotted as _'_. 1i_. tdX against X). To assure this, the
methods of section 6.3.2 are applied.

The energy emitted by element dAt per unit time in the wavelength

interval dX about a wavelength X and in the angular interval dfi about
//i is

daQL ' t(k, f,)= 2¢re_,. t(_., ft, T,)i'_. ,(k, T,) cos lid.At sin fx dftdh

(6-22)

The total energy emitted by d/l_ per unit time is given by equation (6-18).
The probability P(h, fit) dftdk of emission in a wavelength interval

about _ and in an angular interval around Bit is then the energy in dftdh
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(eq. (6-22)) divided by the total emitted energy (eq. (6-18))

_,)d3,dk=d3Q'_,, ,(X, 3,)P(_,,
dQ,.,

= 2_'e_, ,(X, 3,)i;o ' ,(X) cos/3t sin 3, djS,dk
_,o-T 4

(6-23)

(The T, in the functional notation has been dropped for simplicity.)
It is assumed here for simplicity that the directional-spectral emissivity

is a product function of the variables, angle and wavelength, that is,

,_;.(;_,3, ) = o, (_,)o., (3,) (6-24)

This assumption is probably not valid for many real surfaces since, in

general, the angular distribution of emissivity depends on wavelength as
shown, for example, by figure 5-1 of Vol. I. For the assumed form in

equation (6-24). it follows that the emissivity dependence on either
variable may be found by integrating out the other variable (see eq.
(6-9)). Then the normalized probability of emission occurring in the
interval dX is

P()t)d)tfd)t fo"t2 P(_, 3,)d3,

fo _2 ° t2_'dk e'_.,(k, 3,)t_.l(k) sin3, cos/3, d31

_ffi (6-25a)
_,o-T,_

Substituting into equation (6-4) and noting that P(X)dX is zero in the
range --= < ). < 0 give

2¢r ¢' (X*, 3_)i_. ,(k*) sin/3, cos 3, d3,dX*
Rx=

EI(TT 4

(6-25b)

where the asterisk denotes a dummy variable of integration. If the num-

ber of bundles N is very large and this equation is solved for k each time

a random R_ value is chosen, the computing time becomes too large for

practical calculations. To circumvent this difficulty, equations like equa-

tion (6-25b) can be numerically integrated once over the range of X
values and a curve can be fitted to the result. A polynomial approximation

O
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k.ffi A + BR_, + CR_, + . . . (6-26)

is often adequate. Equation (6-26) rather than equation (6-25b) is used
in the problem-solving program.

Following a similar t,_'ocedure for the variable cone angle of emission

/$1 gives the relation

RB,=fo ' x)axa/3•

f:'fo"_ffi2_" t_.l (k,/3*)i_b. ,(k) sin/3* cos/3* dkd/3?

which is curve fit to give

EitrT_
(6-27)

/3, -- D + ER_, + FR_, + . . .

If d.41 is a diffuse-gray surface, equation (6-25b) reduces to

(6-28)

fo_' "' (_.*)d_.*IT g._b, I

Rx, _ ffi ' o'T_ ----Fo- (6-29)

where F0-_ is the fraction of blackbody emission in the wavelength

interval 0 to k. Equation (6-27) for this case reduces to

or

fo StRe,. a_aUse-_rau= 2 sin /3_' cos ill* d/3_'= sin s/3,

sin/31 ffi _/Rn,. dt_,,_-_ay

(6-30a)

(6-30b)

The point to be made here is that computational difficulty is not

greatly different in obtaining _. from either equation (6-26) or (6-29),
nor is it much different for obtaining/31 from either equation (6-28) or

(6-30b). The difference between the nondiffuse-nongray case and the

diffuse-gray case is mainly in the auxiliary numerical integrations of
equations (6-25b) and (6-27). These integrations are performed once
to obtain the curve fits; then as far as the main problem-solving program

is concerned, the more difficult case might just as well be handled. Thus,

increasing problem complexity leads to only gradual increases in the

complexity of the Monte Carlo program and similar gradual increases

in computer time.
For emission of an individual energy bundle from surface dAl, a wave-
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length k can be obtained from equation (6-26), and a cone angle of

emission fll can be obtained from equation (6-28) by choosing two ran-
dom numbers R_ and R_,. To define the bundle path, there remains only

specification of the circumferential angle 01. Because of the assumption
made earlier that emission does not depend on 0t, it is shown by the

formalism outlined and is also fairly obvious from intuition that 0t can

be determined by

01 ---2erRs, (6-31)

where Ro, is again a random number chosen from the range between
' 0 and 1.

Because the position of plane ,42 with respect to rid1 is known, it is a

simple matter to determine whether a given energy bundle will strike ,42

• after leaving rid1 in direction (/31, 0t). (It will hit A2 whenever cos 01 ;_ 0
as shown in fig. 6-4.) If it misses A2, another bundle must be emitted

A2, T2 • 0

_ 'l_ypicai energy bundle path

FIGURK 6-4.- Radiant interchange between two surfaces.

from rid1. If the bundle strikes Az, it must be determined whether it is
absorbed or reflected. To do this, the geometry is used to find the angle

of incidence flz of the bundle on Az, that is,

cos _52----sin I31 cos 01 (6-32)

Knowing the absorptivity of Az from Kirchhoff's law
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' - E,..,.,CX,/3,)a._,.,(_, _,)- ' (6-33)

and having determined the wavelength k of the incident bundle from

equation (6-2b) and the incident angle /32 from equation (6-32), the
probability of absorption of the bundle at A2 can be determined. The

probability of absorption is simply the absorptivity of A_ evaluated at

/3z and _. This follows from the definition of directional-spectral ab-

sorptivity vt_, z(X,/32) as the fraction of energy incident on A2 in a given
wavelength interval and within a given solid angle that is absorbed by
the surface. This is also a precise definition of the probability of ab-

sorption of an individual bundle. The absorptivity is therefore the

probability density function for the absorption of incident energy. It is

now easy to determine whether a given incident energy bundle is ab-

sorbed by comparing the surface absorptivity a_,, 2(_,/32) with a random
number Ro.. If

R_ _ ,,',;,,2(_.,/3_) (6-34)

the bundle of energy is absorbed and a counter $2 in the computer

memory is increased by one to keep account of the absorbed bundles.
Otherwise, the bundle is assumed to be reflected and is not further

accounted for. If the b'undle path were followed further, rereflections
from d.dl would have to be considered. The neglect of rereflections is

reasonable if the absorptivity of _42 is large, or if the directional re-

flectivity is such that few bundles are reflected back along the direction
of incidence. If such reflections cannot be neglected, angles of reflection
must be chosen from known directional refleetivities, and the bundle

is followed further along its path until it is absorbed by A2 or lost from

the system. For the purposes of this example, little is to be gained by
following the bundle after reflection from surface A2 because the deriva-

tion of the necessary relations is similar to that already presented.
A new bundle is now chosen at dA1, and its history is followed. This

procedure is continued until N bundles have been emitted from d.A1.
The energy absorbed at A2 is then calculated from equation (6-21).

The derivation of the equations needed for solution of the example

is now complete. Ir_ putting together a flow chart to aid in formulating
a computer program (fig. 6-5), some methods for shortening machine

computing time can be invoked. For example, the angle 01 is computed
first. If the bundle is not going to strike A_ on the basis of the calculated

02, there is no point in computing X and/3z for that bundle. Alternately,
because 0_ values are isotropically distributed, it can be noted that
exactly half the bundles must strike A2. Therefore, the calculated 01

values can be constrained to the range --_'/2 < 01 < 7r/2.
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FIGURE 6-5.--Computer flow diagram for example radiant interchange problem.
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The formulation of this problem for a Monte Carlo solution is now
complete. An astute observer will note that this example could be solved

without much trouble by standard integral methods. A more astute

observer might note further that extension to only slightly more difficult

problems would cause serious consequences for the standard treatments.

For example, consider introducing a third surface with directional
properties into the problem and accounting for all interactions.

6.4.4 Useful Functions

A number of useful relations for choosing angles of emission and

assigning a wavelength to bundles are given in the previous section.

These and other functions from the literature dealing with radiative
transfer are summarized in table 6-I.
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TABLE 6"--I.--CONVENIENT FUNCTIONS RELATING RANDOM NUMBERS TO VARIABLES FOR

EMISSION (AssUMING NO DEPENDENCE ON CIRCUMFgR£NTIAL ANGLE 0)

Variable Type of

emission

Cone angle fl Diffuse sin fi ffi=R_ Iz

Directional

gray

Directional

nongray

Relation

2 *'(/]*) sin_* cos_8* d_*

Ras

2¢r f : f o" l'_(fl*,7`)i_(7` ) sin fl* cos [3* dT` d_*

Ra _" eo'T'

Circumferential Diffuse 0-- 2erR.

an_e 0

Wavelength 7, Black or Fo-_ -- R_

gray

Nongray

diffuse

Nongzay

direc-

tional

,r _o t_ (7`*)ih ( X*)dT`*
R_

t,o.T 4

fA fm'z2= _(fl, 7`*)i_b (k*) sin _8cos _ d_dT`*
.we jo

_o.T_

EXAMPLE 6--1: A wedge is made up of two very long parallel sides of

equal width joined at an angle of 90 ° , as shown in figure 6-6. The surface

temperatures are 7"1ffi 1000 ° K and T_ ffi 2000 ° K. The effects of the ends

may be neglected. Surface 1 is diffuse-gray with an emissivity of 0.5,

while the properties of surface 2 are directional-gray with directional-total

emissivity and absorptivity given by

• _(0_)= a_(32)ffi0.5 cos #_ (6-35)

Assume for simplicity that surface 2 reflects diffusely. Set up a Monte

Carlo flow sheet for determining the energy to be added to each surface
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in order to maintain its temperature. Assume that the environment is
at T= 0°K.

The energy flux en_itted by surface 1 is

If Ni-emitted sample energy bundles are to be followed per unit time and

area from surface 1, then the amount of energy per bundle will be

w ffi q....l._ eluT_ (6-36)
N1 N1

The energy flux emitted from surface 2 is

fo"/'qe, 2---2o'T_ e_) cos _ sine d/3

_o.T_ fo"' cos_ _ sin_ d_=q _ -

If the same amount of energy w is assigned to each bundle emitted by

wall 2 as was used for wall 1, then

Substituting equation (6-36), the value of el, and the known surface

temperatures gives

_2-- o'T| N1 =_ N1 (6-37)-- -3 e,o'T_

Because each bundle has equal energy and 32/3 as many bundles are
emitted from surface 2 as from surface 1, it is obvious that surface 2

will make the major contribution to the energy transfer.
Now the distributions of directions for emitted bundles from the two

surfaces will he derived. Surface 1 emits diffusely_ so that equation

(6-30b) applies. For surface 2, however, equation (6-27) must be used.
Substituting equation (6-35) into equation (6-27) gives, for the direc-

tional-gray case,

2¢ri_._ If' (0.5 cos fl*) sin fl_ cos fl* d_'

Rz, = jo ezo'T4•
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The hemispherical total emissivity is substituted from equation (6-19)

to give

f_l cos z fl* sin fl* dfl_

R- _jo = 1 - cos_ _2

Jo cos z fit sin fit dfl_

The fact that R and 1-R are both uniform random distributions in the

range 0 _ R _ l can be used to write this as

cos/3_= Ry,_

Note that, by similar, reasoning, equation (6-30b) can be written

cos/3,ffiR_

Since there is no dependence on angle 0 for either surface, equation

(6-31) applies for both surfaces.

The distributions of directions at which bundle emission willoccur has

now been determined. Next, the position on each surface from which

path

FIGURE 6"6.- Geometry of example 6-1.
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each bundle will be emitted must be determined. Because the wedge

sides are isothermal, the emission from a given side will be uniform. In

such a case, random positions x (fig. 6-6) on a given side could be picked

as points of emission. Such a procedure requires generation of a random
number. The computer time required to generate a random number can

be saved by noting that the bundle emission is the initial process in each

Monte Carlo history; hence, there is no prior history to be eliminated

by using a random number. In this case, x positions along L can be

sequentially chosen as

where n is the sample history index for the history being begun,
1 g rt._ N.

The point of emission and direction of emission for each bundle leaving
either surface can now be determined. The remaining calculations
involve determination of whether the emitted bundles will strike the

adjacent wall or will leave the cavity. Examination of figure 6-6 shows

that, for either surface, when _"_; 0 _ 2¢r, the bundles will leave the
cavity for any/3, and when 0 < 0 < or, they will leave if

sin _<

x

sin 0 1

The angle of incidence fit on a surface is given in terms of the angles
/3a and 08 at which the bundle leaves the other surface by

cos/31 ffi sin/3s sin t_s

All the necessary relations are now at hand. Now a flow diagram is

constructed to combine these relations in the correct sequence. Dif-
fuse reflection is assumed from both surfaces. The resulting flow dia-

gram is shown in figure 6--7. Study of this figure will show one way

of constructing the flow of events for the problem at hand. The use of
the indices 8, 8', and 8" is an artifice to reduce the size of the chart.
The index 8 always refers to the wall from which the original emission

of the bundle occurred, and 8' refers to the wall from which emission
or reflection is presently occurring. The index 8" is used to make the

emitted distribution of/3 angles correspond to either R_,: or R_/a and
have all the reflected bundles correspond to a diffuse distribution.
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6.4.5.Uterature on Application to Radiation Exchange Between Surfaces

The standard or conventional methods for solving problems of radia-

tive transport between surfaces in the absence of absorbing media were
formulated in chapters 2 to 5. The standard methods have advantages

for certain types of problems and will outshine the Monte Carlo ap-

proach in speed and accuracy over some range of radiation calculations.
This range is outlined roughly by the complexity of the problem, and the
areas of usefulness of the Monte Carlo approach will now be discussed.

The chief usefulness of Monte Carlo to the thermal radiation analyst

lies in this fact: Monte Carlo program complexity increases roughly

in proportion to problem complexity for radiative interchange problems
while the difficulty of carrying out conventional solutions increases

roughly with the square of the complexity of the problem because of
the matrix form into which the conventional formulations fall. However,
because Monte Carlo is somewhat more difficult to apply to the simplest

problems, it is most effective in problems where complex geometries
and variable properties must be considered. In complex geometries,
Monte Carlo has the additional advantage that simple relations will

specify the path.of a given energy bundle, whereas most other methods

require explicit or implicit integrations over surface areas. Such inte-
grations become difficult when a variety of curved or skewed surfaces

are present.

6.4.5.1 Configuration factor computation.- The calculation of radia-
tive configuration factors by standard means usually involves certain

assumptions that place restrictions on the application of these factors
in exchange computations. The assumptions required when using
the ordinary configuration factors as derived in chapter 2 are that the
surfaces involved are diffuse-gray emitters and reflectors, that each

surface is isothermal, and that the total flux arriving at and leaving each

surface is evenly distributed across the surface. Any of these assump-

tions may be very poor; most surfaces are neither diffuse nor gray,
and the distribution of reflected flux usually deviates from uniformity to

some extent. Where deviations from the assumptions must he considered,

calculation of the configuration factors becomes difficult, and if geom-

etries with nonplanar surfaces are involved, Monte Carlo techniques may
become invaluable. It should be noted, however, that unless a parametric

study of the interchange of radiant energy within an enclosure with speci-

fied characteristics is being carried out, it may be easier to compute

directly the entire radiative flux distribution by Monte Carlo. This
would be simpler than computing configuration factors by Monte Carlo
and then using an auxiliary program to calculate energy exchange by
means of these factors.

As computed by Monte Carlo, configuration factors are identically
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equal to the fraction of the total energy bundles emitted from a surface
that is incident upon a second surface. No restrictions are made to

diffuse-gray surfaces with evenly distributed, emitted, and reflected
flux.

Corlett (ref. 17) has computed exchange factors (as distinguished

from configuration factors) for a variety of geometries, including louvers,

and circular and square ducts with various combinations of diffusely

and specularly reflecting interior surfaces and ends. These factors

give the fraction of energy emitted by a given surface that reaches
another surface by all paths, including intermediate reflections• One
set of results, the exchange factors between the black ends of a cylinder

with a diffusely reflecting internal surface, is shown in figure 6-8.
Weiner et al. (ref. 18) carried out the Monte Carlo evaluation of

some simple configuration factors for comparison with analytical solu-

tions. They then considered energy exchange within an enclosure with

five specularly reflecting sides, each side being assumed to have a
directional emissivity dependent upon cone angle of emission.

Total number of sample
bundles per unit time,

N

_ ..--i---- sooo

Is

e-

.6

•4

.3

.2

- E3

0 .6

- At"1 O"2 Monte Carlo

Intecjral equation

I I I I I I
.2 .3 .4 .6 .8 1 2

Length-to-diameter ratio, LID

3 4 6 8 10

FIGURE 6-8.--Radiation exchange factors between black ends of diffuse walled cylinder
(from ref. 17). _,ffiez= 1.
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They also worked out the case of interchange within a simulated

optical system. This system is constructed of a combination of spherical

and conical surfaces that enclose a cylindrical specular reflector with

two surfaces. This is obviously an interchange problem to cause many

unhappy hours of analyzing integral limits in the usual formulations.

6.4.5.2 Cavity properties.-At least one Monte Carlo solution exists
in the literature for a surface interaction with a distant source. This

is the case of a conical cavity with diffusely reflecting inner surface.

Polgar and Howell (ref. 19) analyzed the bidirectional reflectivity of

the cavity when exposed to a beam of paraLlel incident radiation and

also determined the directional emissivity of the cavity. Parameters

varied were the angle of incidence, cone angle, and emissivity of the

inner surface of the cone. One set of representative results is shown in

figure 6-9. No results were found in the literature for direct comparison

of the computed directional properties; however, the hemispherical

absorptivity results were obtained by integrating the directional values

and were compared in reference 20 to analytical results from reference

21. The comparison is shown in figure 6-10.

The bidirectional reflectivity results computed by Monte Carlo in

reference 19 illustrate the scatter of the computed points that depends

on the number of energy bundles reflected from the cone interior through

any given area element on a unit hemisphere imagined over the conical

>

1.0

.8

.6

.4

.2

o .Z .4 .6 .8
• Apparenthemisphericalabsorptivity

Coneangle /_/ ..//_

- °f_ae_itY' _'J_'_ _ V Y

H/'//
I I , I i I , I

1.0

FIGUR£ 6-10.-Comparison of Monte Carlo results for absorptivity of conical cavities
{ref. 20) with analytical results (ref. 21).
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FIGUIPJI 6..-].].--Expected stanclaurd deviation of results for bidirectionaJ rei]ectivity of

diffuse conicaJ cavity. Cone ansJe of cavity, 30=; angle of incidence of radiation, 00 =

(from ref. 19).

cavity. The scatter is shown in figure 6-11, which gives the standard

deviation of the computed reflectivity at various angles of reflection.

The solid angle subtended to the base by area elements of equal angular

increment A/3A8 on the hemisphere varies with the sine of the angle

of reflection, so the number of sample energy bundles per unit solid

angle doJffisin /3 d/3de near the cone axis becomes very smal]. This

leads to larger scatter at angles near the cone axis, where sin/3-'* 0.

6.4.5.3 Extension to directional and spectral surfaces.-Few refer-

ences exist that treat problems involving both directionally and spectrally

dependent properties. The reasons for this omission seem twofold.

First, accurate and complete directional-spectral properties, especially

the former, are not often found in the literature. An analyst desiring to

include such effects might thus be unable to find the requisite data for his

system. Second, when solutions are attained to such problems, they are

often so specialized that little interest exists to warrant their wide dis-

semination in the open 'Literature. As pointed out by Dunn et al. (ref. 22),

when the radiative properties become available, the methods for han-

dling such surface radiative energy exchange problems now exist, and

Monte Carlo appears to be one of the better-suited techniques.

Toor, Viskanta, and Schornhorst (refs. 23 to 26) have successfully

applied Monte Carlo techniques to some interchange problems involving
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surfaces with directional and spectral property variations. Some of these

results were discussed in chapter 5.

6.4.6 Statistical Difficulties of Monte Carlo Technique

Monte Carlo calculations give results that fluctuate around the "real"

answer because the method is a repetitive experiment using a mathe-
matical model in place of the actual physical situation. The uncertainty

can be found by applying standard statistical tests; the uncertainty can

be reduced in the same manner as experimental error, that is, by averag-

ing over more tests (bundle histories), and/or by reducing the variance
of individual tests.

No rigorous criteria exist to guarantee the convergence of Monte
Carlo results to valid solutions; however, convergence has not as yet

been a difficulty in thermal radiation problems. It would often be im-

mediately evident that convergence to invalid solutions was occurring
because of the limiting solutions and physical constraints that are

known for most radiative problems.
Most of the difficulties that do arise in Monte Carlo sampling tech-

niques are concerned with obtaining an optimum sample size. Such
difficulties have been sufficiently common in transport processes that

are mathematically related to radiative transport so that special methods

of "'weighting" the free paths of bundles have been developed to obtain
adequate samples. Using these methods saves computer time and in-

creases accuracy; these gains, however, are at the expense of added

complexity.

6.4.7 Closing Remarks

In this chapter, Monte Carlo has been discussed as a method suitable
for the solution of complex radiative exchange problems. Two sample

problems were outlined to demonstrate its application, and some of the
advantages and disadvantages of the technique were discussed along

with pertinent literature references.

From this, certain conclusions emerge. First, Monte Carlo appears
to have a definite advantage over other radiative exchange calculation

techniques when the difficulty of the problem being treated lies above
some undefined level. This level usually cannot be defined since it

depends not only on the'specific problem but is probably a function of
the experience, competence, and prejudice of the individual working

the problem. However, problems with complexity above this nebulous
benchmark can be treated by Monte Carlo with great flexibility, sim-

plicity, and speed. The Monte Carlo approach does lack a kind of gen-

erality common to other approaches in that each problem may require
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an individual technique, and a dash of ingenuity often helps. This

places a greater burden on the programmer's backlog of experience and

intuition whereas standard methods may allow programing through

"cookbook" application of their formalism if they can be applied at all.

Second, for the thermal-radiation problems carried out to date,

the parameters and mathematical relations involved usually lie in ranges

which allow straightforward Monte Carlo programing without the need

of the more exotic schemes occasionally necessary in other Monte

Carlo transport studies.

Third, with all its advantages, the method suffers from certain dif-

ficulties. The worst of these are the statistical nature of the results and

the lack of guaranteed statistical convergence to the true mean value.

It should be noted that the latter fault is common to many methods when

complex problems are being treated because rigorous mathematical

criteria to guarantee convergence to a solution are available only in
certain cases.

Finally, it must be commented that the person using Monte Carlo

techniques often develops a physical grasp of the problems encountered

because the model being utilized is simple, and the mathematics de-

scribing it are therefore on a less sophisticated basis. This is in contrast

to the rather poor physical interpretations and predictions which can

be made when working with, say, a matrix of integral equations.
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Chapter 7. Radiation in the Presence of Other

Modes of Energy Transfer

7.] INTRODUCTION

In the preceding chapters, radiation exchange was the only mode of

heat transfer considered to be present. In many practical systems,
however, a significant amount of heat conduction and/or convection
may be occurring simultaneously, and the combined effect of all the
heat transfer modes must be accounted for. The interaction of heat

transfer modes may be simple in some cases; for example, the heat
dissipation by radiation and convection may be essentially independent

and hence can be computed separately and then added. In other in-

stances, the interaction can be quite complex.
The following are some examples of situations having combined heat

transfer effects. For a vapor cycle powerplant operating in outer space,

the waste heat is rejected by radiation. In the space radiator, as shown

in figure 7-1(a), the vapor used as the working fluid in a thermodynamic
cycle is condensed, thereby releasing its latent heat. The heat is then
conducted through the condenser wall and into fins that radiate the

energy into space. The temperature distribution in the fins and the fin
efficiency depends on the combined radiation and conduction processes.

In one type of steel strip cooler in a steel mill, figure 7-1(b), a sheet

of hot metal moves past a bank of cold tubes and loses heat to them by
radiation. At the same time, cooling gas is blown over the sheet. A com-

bined radiation and convection analysis must be performed to determine
the temperature distribution along the steel strip moving through the
cooler.

In a nuclear rocket engine such as illustrated by figure 7-1(c), hydrogen

gas is heated by flowing through-a high-terrrperature nuclear reactor
core. The hot gas then passes out through the rocket nozzle. The interior
surface of the rocket nozzle receives heat by radiation from the exit

face of the reactor core and by convection from the flowing propellant

stream. Both these energy quantities are conducted through the nozzle
wall and removed by a flowing stream of coolant.

The examples cited all involve the transfer of heat by two or more
heat transfer modes. Heat may flow first by one mode and then by a

second, as is the case of conduction through a plate followed by radiation
from the surface, and the modes are considered to be in series. Heat

flow may also occur by parallel modes, such as by simultaneous conduc-

213
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"- Condensinqvapor

(a)

_Cooling gas

Steel_strip

Ib)

Nuclear Reactor
reactor - -p

p/

(c)

(a) Space radiator.

(b) Steel strip cooler.
(c) Nuclear rocket.

FIGUl_ 7-1. -- Heat transfer devices involving combined radiation, conduction, and
convection,

tion and radiation through a transparent medium. The modes can thus

be acting in series, parallel, or both.
In this chapter, combined radiation, conduction, and convection

problems will be examined subject to an important restriction: The
medium through which the radiation is passing does not absorb or emit

radiation; that is, it is completely transparent. This restriction will be
removed in the third volume of this series which deals with media that

absorb, emit, and scatter radiation.

The various heat transfer modes depend on temperature to different

powers. When radiation exchange between black surfaces is considered,
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the energy fluxes depend upon surface temperatures to the fourth power.
For nonblack surfaces, the exponent on the temperature may be some-

what different from 4 because of the variation of emissivity with tempera-

ture. If conduction is present, the Fourier conduction law prescribes a

dependence of heat flow upon local temperature gradient, thus introduc-

ing derivatives of the first power of the temperature (when the thermal
conductivity does not depend on temperature). If convection enters the

problem, it provides a heat flow that depends approximately on a dif-
ference of the first powers of the temperatures, the exact power depend-

ing on the type of flow; for example, free convection depends on tempera-
ture difference between the 1.25 and 1.4 power. Physical properties

that vary with temperature will introduce additional temperature

dependencies. The fact that such a wide variation in powers of tempera-

ture are involved in the energy transfer process means that the governing
equations are highly nonlinear.

Because the radiation terms are usually in the form of integrals that

give the amount of radiative energy from the surroundings, and the con-
duction terms involve derivatives, the energy balance equations are in

the form of nonlinear integrodifferential equations. Such equations are
not easily solved using presently available mathematical techniques.

Except in the simplest cases, it is usually necessary to resort to numerical
evaluation of the solutions. Each problem requires its own most efficient

method of attack, .and for this reason, no general discussion of numerical

or other mathematical solution techniques will be given here. For
such techniques, the reader is referred to the extensive mathematical

literature on numerical methods and the representative radiation papers
referenced throughout this chapter. This chapter will concentrate on the

methods of setting up the energy balance equations and gaining insight
into the physical problems, leaving the actual solution methods to the

mathematical texts except where specialized approaches are of value.

A

a

B

b

C

cp
D

F

f
G

7.2 SYMBOLS

area

spacing between fins; coef6cients in matrix

parameter in example 7-4
thickness of conducting medium; fin thickness; tube wall thick-

ness
correction factors

specific heat
tube diameter

configuration factor
coefficients in eq. (7-12)

parameter in eq. (7-30)
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H
h

k
L

l

M
N

Nu

n

P

Pr

Q
q
R

Re
r

S

T

t

tim

W
X

%8

,)
0

g

gl

P!
pm
o"

T

parameter defined in example 7-5
heat transfer coefftcient

thermal conductivity

length of tube
dimensionless tube length, LID

parameter in eq. (7-30)

parameter defined in connection with eq. (7-25)
Nusselt number, hD/k
normal direction

perimeter
Prandtl number, cpp..dk

energy rate; energy per unit time

energy flux; energy per unit area per unit time
dimensionless radius of example 7-3

Reynolds number, Du.,p.d/.t.r
radius

parameter defined in example 7-5
absolute temperature

dimensionless temperature

mean fluid velocity

width of fin in example 7-4
distance from tube entrance to ring element

Cartesian coordinate positions

dimensionless parameters of example 7-3

emissivity

fin efficiency, defined in example 7-3
dimensionless temperatures in examples 7-3 and 7-4
dimensionless parameter defined in example 7-4

fluid viscosity
distance from tube entrance

distance from fin base

density of fluid

density of solid material
Stefan-Bohzmann constant
time

Subscripts:

a base surface between fins

b evaluated at base of fin
c conduction

e environment

f fin or fluid

g gas
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i in or inner

o out or outer
R radiation

r reservoir
w wall

x at position x
at position sr

1, 2 evaluated at surfaces 1,2 or at inlet and exit ends of tube
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7.3 PROBLEMS INVOLVING COMBINED RADIATION AND CONDUCTION

Physical situations that involve only conduction and radiation are

fairly common. Some examples are heat losses through the walls of a

vacuum Dewar, heat transfer through "superinsulation" made up of
separated layers of highly reflective material, and heat losses and

temperature distributions in satellite and spacecraft structures.
The sophistication of the radiative portion of the analysis can range

from assuming finite black surfaces and using diffuse configuration
factors to a complete treatment of local directional-spectral effects via

a Monte Carlo or integral equation approach. The choice of radiative

formulation depends on the accuracy required, and the relative impor-
tance on the quantities desired of the radiative mode in relation to the

heat conduction. If conduction dominates, then fairly rough approxima-
Lions can be invoked in the radiative portion of the analysis, and vice
versa. Some simple examples of situations involving radiation and

conduction are now examined, and progress is then made to more

sophisticated treatments.

7.3.1 Uncoupled Problems

The simplest situation exists when the radiation and conduction
contributions to an unknown quantity, say heat flux, are independent;

the contributions are then computed separately and the individual
results added. The heat transfer modes are said to be uncoupled with

regard to the desired quantity.

EXAMPLE 7--1: As an example of an uncoupled situation, consider

two black infinite parallel plates separated by a medium of thickness b

that has thermal conductivity k and is transparent to thermal radiation.

If one plate is at temperature 7"1 and the other is at temperature T.z,
what is the net energy exchange between the plates?

The net energy transferred is composed of 0_, the net radiative

exchange, and Q,, the transfer by conduction. The net energy transferred

is also equal to the energy QI that must be added to plate 1 to maintain
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it at its specified temperature,

QI ffi Qs + Qc

The energy transfer per unit time and area by radiation between two

infinite parallel black plates is simply

13
"¢---£_= or( T_ -- T 4)
A

and that by conduction is

Q_ k
A =b (T,--T-_)

The total energy transfer per unit time and area is then the sum of

the separate contributions or

-Q_ _r(T_-T_) kA = +_ (T,-T.z)

Example 7-1 demonstrates a situation where the conductive and

radiative components are uncoupled from one another; that is, the

presence of one parallel heat transfer mode does not affect the other

with regard to the computations of Q/A. The Q/A for each mode is com-

puted independently and they are then added. The radiative transfer
would have been the same in the presence of conduction and vice versa.

In such problems, all the methods of radiative computation developed

heretofore can be applied without modification, since the radiation is

computed independently.

7.3.2 Coupled Nonlinear Problems

Unhappily, the uncoupled problems described in the previous section

are not as common as coupled problems. In coupled problems the

desired unknown quantity cannot be found by adding separate radiation

and conduction solutions; the governing energy equation must be solved

with the two modes simultaneously included. In some situations, it is

possible to assume that the modes are uncoupled because of the weak

coupling that occurs. This assumption, when valid, allows escape from

some of the difficulties that will become manifest in succeeding sections

of this chapter.
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EXAMPLE 7-2: As a simple example of a coupled problem, consider

from another viewpoint the situation in the previous example; that is,
two black infinite parallel plates that are separated by a transparent

medium of thickness b having thermal conductivity k. Plate 2 is at
temperature 7".,, and a known amount of energy Q=/A is added per unit

area to plate 1 and removed at plate 2. What is the temperature T,
of plate 1?

This is the same situation as example 7-1, except that Q= is now

known and 7'1 is to be found. The same energy equation applies as in
example 7-1 and is rewritten to place the unknown on the left

4 k 4 kT.,+-_l_rT! + _ T, = _T: +'b

The problem is coupled with regard to the desired unknown T_ in that

T_ must be found from an equation that simultaneously incorporates

both heat transfer processes. The equation for T, is nonlinear and can
be solved iteratively.

These first two examples demonstrate that the types of boundary

conditions that are specified govern the possibility of uncoupling the

radiative and conductive calculations. When all temperatures are speci-
fied, the determination of the heat fluxes can usually be uncoupled.

If energy fluxes are specified, however, the entire problem must be
treated simultaneously because of nonlinear coupling governing the

unknown temperatures. The treatment can become more difficult if
variations of physical properties as functions of temperature must be
included.

In devices that operate in outer space, a means for dissipating energy
is to employ radiating fins. The energy is conducted into the fin and
radiated away from the fin surface. The determination of the unknown

temperature distribution within the fin requires a coupled solution. The

next example will deal with an analysis of the performance of a single
circular fin.

EXAMPLE 7--3: A thin annular fin in a vacuum is embedded in insula-

tion so that it is insulated on one face and around its outside edge as
shown in figure 7-2(a). The disk is of thickness b, inner radius r_, outer

radius ro, and thermal conductivity k. Energy is being supplied to the
inner edge, for instance, from a solid rod of radius ri that fits the central

hole, and this maintains the inner edge at Ti. The exposed annular

surface, which is diffuse-gray with emissivity e, radiates to the environ-
ment, which is at temperature T_ = 0. Find the temperature distribution

as a function of radial position along the annular disk.

Assume that the disk is thin enough so that the local temperature can

323-003 0-69-- 13
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Te.,O

. r ,-Insulation

(a) (bl

(a) Disk geometry. (b) Portion of ring ele-

ment on annular

disk.

FIGURE 7-2. --Geometry for finding temperature distribution in thin radiating annular plate
insulated on one side and around outside edge.

be taken as constant across the thickness b; then for any ring element of

width dr as shown in figure 7-2(b), an energy balance can be made of
the form

AfB+C

In this equation, ,4 and C are the conduction entering and leaving the

element, and B is the radiation from the element; thus,

A = -- k2crrb-_

B = ecrT 4 2_rr dr

dT d (_ k2rrrb d_r drC = - k2_'rb -_r +

If • and k are constant, then the energy balance becomes
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d / dTN 4
kb-_r(r_r)--ero'T =0 (7-1)

This equation is to be solved for the temperature distribution T(r)

subject to the two boundary conditions: at the inner edge,

T _ Ti at F _ rl

and, at the insulated outer edge where there is no heat flow,

dT
dr=O at r=r0

By using the dimensionless variable O=T/Ti and R= (r-n)/(ro-n),
the energy equation becomes

d_O _ 1 dO (to-- ri) 2 Eo'T_tO4.__0
dRZ R+ r_..L__dR kb

ro -- ri

Using the two parameters 8=ro/r_ and 3, = (ro-ri)2Eo'T_/kb results in

the energy equation taking the form

d'O 1 dO
+ 1 dR 3,O4 = 0

R+_
6-1

(7-2)

with the following boundary conditions:

O=1 at R=0

and

aO
--=0 at R=I
aR

Equation (7-2) is a second-order differential equation which is non-
linear because it contains O raised to two different powers. The tempera-

ture distribution depends only on the two parameters $ and 3,. A solution

can be obtained by numerical methods.

A quantity of interest in the utilization of cooling fins is the fin ef-
ficiency +!. This is defined as the energy actually radiated away by the fin

divided by the energy that would be radiated if the entire fin were at

323-003 O--69--16
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the temperature Tt. The fin efficiency for the circular fin being studied

here is then

f? f0'21r,.o" rT 4 dr 2
I =

= rr(r_-- r'_)_crT_

[RIB- 1.)+ 110 4 dR

8+1

This integral may be carried out after O has been determined from the
differential equation. The fin efficiency for this type of annular fin has

been obtained by Chambers and Somers (ref. 1) and is shown in figure 7-3.

6

1.001

0 .2 .4 .6 .8 1.0 1.2 1.4 1.6 1.8 ZO

FIcuI£ 7-3. - Radiation fin efficiency for fin of example 7-3.

Because of the interest in radiator design for application in space

power systems, many conducting-radiating systems have been analyzed.

Typical are references 1 to 8 listed at the end of this chapter; many other
references are to be found in the literature.

For a transient situation where the temperature of the radiating fin

is changing with time, a heat storage term must be included in the energy

balance. For the ring element in example 7-3 this term is

p.,cpb2_'r dr

With this term included, the energy balance equation (eq. (7-1)) be-

comes a partial differential equation in which temperature is a function
of radius and time

3 (r__r_ OT (7-3)kb _r -- _ro'T 4= pmCp c)-'-r
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Results for the transient behavior of a radiating fin are given in ref-
erence 4.

For a thin radiating fin, the temperature within the fin was assumed

uniform across the fin thickness, and hence the temperature variation
was only in a direction parallel to the radiating surface. If the solid is

thick, however, the temperature will vary also with distance normal to

the radiating surface. The radiation acts as a boundary condition foi the

solid conduction problem; thus, locally at the surface of a solid that is

emitting but not receiving radiation, the boundary condition is

0T
- k -_n = _°'T4 (7-4a)

where n is the outward normal from the surface. More generally, when

the surface is both receiving and losing radiant energy,

OT
- k "_n = q° -- q_ (7-4b)

Time-dependent temperature distributions within solids having surface

radiation were investigated in reference 8. The transient heat conduction

equation was solved with the boundary conditions of equations (7-4).
Example 7-3 considered only a single radiating fin. One additional

complication that must usually be considered is the mutual interaction of

radiation among the fins on a multifinned surface. This wiLl introduce
integral terms into the equations as will be evident from the next example.

EXAMPLE 7--4: An infinite array of thin fins of thickness b, width IV,
and infinite length are attached to a black base that is held at a constant

temperature Tb as pictured in figure 7-4. The fin surface radiates in a

diffuse-gray manner, and the fins are in vacuum. Set up the equation
necessary for describing the local fin temperature, assuming the environ-

ment to be at Te = 0.

Because the fins are thin, it will be assumed that the local temperature
of the fin is constant across the thickness b. An energy balance will
now be derived for the circled differential element of one fin ._hown in

the inset of figure 7-4. Since there is an infinite row of fins, the surround.
ing environment is identical for each fin and is the same on both sides of

each fin. Hence, from symmetry, only half the fin thickness need be con-

sidered. Also, the problem is simplified because the temperature distribu-

tion T(_) of the adjacent fin is the same as T(x). Thus, the energy balance
need be considered for only one fin. The conduction terms for the energy

into and out of the element dx per unit time and per unit length of fin
in the z-direction are
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IQC, 0Ix)

_2 _-- _

j_L__TI _. i_xl

Qc, i(x)

FIGUI_ 7-4. --Geometry for determination of local temperatures on parallel fins.

. bd_DT
qc,,(x) =-k_ d_

bcr_ a / b+r+_
Q:'°<x) =O:"+ dOc"=-k 2 dx +---._-k_ dx ) dX

The radiation terms are formulated by using Poljak's net radiation

method from section 3.4.1. The incoming radiation to the element

originates from the adjacent fin and from the base surface,

Lqs. t(x)dx = q,, o(_)dFa_-_l,_ + acrr_ dF_-a_.
=0

I:= dx qs. o(_¢)dF_-at + dxo'T_Fax-a (7-5)
=0

The outgoing radiation is composed of emission plus reflected incident
radiation

q,. o(X)dx = _o'T}(x)dx + ( 1 - _)qR. i(x)dx (7-6)

The energy balance on the element is composed of the conduction and

radiation quantities
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qR, o dx + Qc, o(x) =qt¢, dx +Oc, l(x)

By substituting the conduction terms and assuming constant thermal

conductivity, the energy balance becomes

qR, t(x)dx,=qR, o(X) -- _2 dx 2 (7-7)

Equation (7-7) along with equations (7-5) and (7-6) for qR.i(x) and

qR.o(X) give three equations in the unknowns qx.i(x), qx.o(X), and

T1(x). (Note that qR.o(_)=qR, o(X).) Eliminating the two energy rates
qx. l and qK. o from the three equations results in

d20(X)
/.t dX 2 _-O4(X)=F_-s

+ -tt(1-_)
,=0

d'O(Z)dz2 t-O4(Z)] dFax-az (7-8)

where O(X)=T!(x)/To, B=a/V/, iz=kb/2_crTglV2, X=x/lV, and

zf#/F.,'.
Equation (7-8) is a nonlinear integrodifferential equation and can be

solved numerically. Since it is a second-order equation, two boundary

conditions are needed. At the base of the fin Tf(x=O)= T_ so that

Of 1 atX=0 (7-9a)

A second condition is obtained at the outer edge of the fin x=/V. The

conduction to this boundary must equal the heat radiated

oT
- k_x I._.w = E°'T4(W)

or in terms of O

dO _o'Tg_ 1 b
.... 04 =X----= O4

dX k _g w
atX= 1 (7-9b)

and it is evident that the fin thickness to width ratio b/IV now enters

• the problem as a new parameter. If (b/W)/2g is very small, then dO/dX
can be taken as zero.

The configuration factors in equation (7-8) are found by the methods

of examples 2-4 and 2-6 (for a=90 ° in those equations), which give
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[a'+ (#-x)'] '/_ [B_+ (Z-X)'] 3/_dg

Solutions to other fin problems involving mutual interactions are found
in references 9 to 18.

The examples given in this section are simplified in that no property
variations have been included. When properties are variable, the basic

concepts are the same as demonstrated by the examples, although the

inclusion of property variations does add some complexity to the func-

tional form of the equations. The usual warnings concerning the inade-

quacy, in some cases, of the diffuse-gray assumptions carry over to

muhimode problems.

When finite difference techniques are used in the solution of combined

conduction-radiation problems, the energy equation, is replaced by a
set of simultaneous nonlinear algebraic equations. When the physical

properties axe constant, the conduction terms will contain temperatures

to the first power while the radiation terms will have temperatures to
the fourth power. To solve a set of nonlinear equations of this type, Ness

(ref. 19) has presented a rapid convergence iteration method for the
digital computer based on the Newton-Raphson technique. Assume that
the set of finite difference equations for the radiation conduction problem

has the form

t 4 t 4 P 4
(a,2t., + alztz)+" • " + (alntn + alntn)-- bl = 0(atttt+alttt)+

t t 4 _ 4
(atltt, q- air t_) q-.... + ({lijlj "q- aij tj )+" • "-6 (aint. + a_. t.) -- bi = 0

t 4 _ 4{a_t_ + a_t'_) +. • • + (a.jtj + a._tj ) +" • • + la,_t. + a,.t.) -- b_ = 0

(7-10)

The jth temperature is t_ and the coefficients for the linear and non-

linear contributions of this temperature are a;_ and a;'_, respectively.
In the Newton-Raphson procedure, an approximate value for each

temperature is assumed. Let tjo be this approximation for the jth tem-

perature. Then a correction factor cj will be computed so that t_= tjo + cj.
This corrected temperature is used to compute a new c_, and the process
is continued until the c_ becomes smaller than a specified value. The

cj are found from the following set of linear equations:
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f,,c, +J_2c_ +" • • +_ nc, +f, -= 0

f.c, +. • • + fj:cj+ . • •+ f_,,c,,+ f, = o

A,c, +A-_c_+- " "+A.c. +A = 0

The coefficients fi are given by

r 4
fi = _ (aot_o+aot_,) --bt

j-I
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(7-11)

(7-12)

and thetis are

' 3
fij = air 4- 4aotj, (7-13)

7.4 RADIATION AND CONVECTION

The treatment of problems involving combined heat transfer by con-

vection and radiation is quite similar to that for conduction-radiation

problems• The temperature differences that govern convection will

appear in place of the derivatives governing conduction; otherwise, the

governing energy equations remain of the same nature (i.e., nonlinear

and often almost intractable).

Radiation-convection interaction problems are found in consideration

of convection cells and their effect on radiation from stars, furnace

design where heat transfer from surfaces occurs by parallel radiation

and convection, the effect of incident solar radiation interacting with the

Earth's surface to produce complex free convection patterns and thus

complicate the art of weather forecasting, and marine environment

studies for predicting free convection patterns in oceans and lakes.

Representative solutions are found in references 20 to 23. To illustrate

the concepts involved in an engineering problem, an example will now

be considered that involves gas flow through a heated tube.

EXAMPLE 7-5: A transparent gas enters a black circular tube of

geometry shown in figure 7-5. The wall of the tube is thin, and the outer

surface of the tube is perfectly insulated. The tube wall is heated elec-

trically to provide a uniform input of energy per unit area per unit time.

The variation of local wall temperature along the tube length is to be

determined. The convective heat transfer coefficient h between the gas

and the inside of the tube is assumed constant. The gas has a mean

velocity u,_, heat capacity cp, and density ,of.
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Fluid at
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I Un r?  yin. tto

tl,
FIGUI_ 7-5.-Flow through tube with uniform internal energy input to wall and outer

surface insulated.

If radiation were not considered, the local heat addition to the gas

would be equal to the local electrical heating (since the outside of the tube

is insulated) and hence would be invariant with axial position X along the

tube. As a consequence, both the gas temperature and wall temperature
would rise linearly with X. On the other hand, if convection were not
considered, the only means for heat removal would be by radiation out

the ends of the tube as discussed in example 3-8. In this instance, for

equal environment temperatures at both ends of the tube, the waLl
temperature has a maximum at the center of the tube and decreases

continuously toward both ends. The solution of the combined radiation-

convection problem is expected to exhibit partially both of the trends of
the limiting solutions.

Consider an energy balance on a ring area element of length d.X on

the interior of the tube wall at position X as in figure 7-5. The energy
supplied to the ring per unit time is

qwrrD dX + fa-o o'T_(=-)dF,m-_( I-= -XI) rrDd__

rrD2
+ crT_,, T dF_-ax(X) + o'T_.., -_ dF._,_a.x(L-X)

The terms are, respectively, the energy supplied by electrical heating

of the tube wall, the energy radiated to d,4x by other wall elements of
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the tube interior (see section 3.4.1.3), and the energy radiated to d,4x
from the inlet and the exit reservoirs. The reservoirs are assumed to

act as black disks at the inlet and outlet reservoir temperatures which

would have to be specified. Usually, the reservoirs are assumed to be at
the inlet and outlet gas temperatures. The energy transferred away from

the ring element at X by convection and radiation is

herd dX [Tw(X) - T_(X)] + o'T_ (X)crD dX

If axial heat conduction in the tube wall is neglected, the energy sup-

plied to the ring element must equal that transferred away, and the

energy quantities are equated to yield the following expression (rec-
iprocity has been used on the F factors so that dX could be divided out

of the equation):

h [Tw(X) - Ty(X)I + o'T_+(X) -- q_ + .oo'T_ (-=) dF__ _(IX - =-[)

+o'T4,. IF_x-,(X)+o'T_. ,F_-z(L -X) (7-14)

This equation has two unknowns Tw(X) and Tg(X); hence, a second
equation must be found before a solution can be obtained. This is done

by forming an energy balance on the volume within the tube occupying

the length dX. The energy that enters this volume by being carried by
the flowing gas is

T X _'D2
Ql, _ffi u,,,pfp ,,( ) T

An additional amount of energy is added to the volume by convection

from the wall, namely,

dQ,. g--__rDh [Tw(X)- Tg(X)] dX

Energy leaves by being carried out by the flowing gas

IrD2
Oo, ,ffi u,,,p.rc,---_-- [ T_X) + dTg(X) d'X ]dx

Equating the outgoing to the incoming energies gives the energy balance

umpfcp _ dX ffih [T_(X)- Tg(X)] (7-15)
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By defining the dimensionless quantities

4h 4Nu
__

u.,pfp Re Pr

/ O" \1/4

and x--X/D, _=N/D, t=L/D, the energy balances on the wall and

fluid elements can be written, respectively, as

t&(x) +tl[t,_(x) -t_(x)] ffi1+ t&(6) dF__dt(x-_:)

f'+ t_(_)dF_-dc(_--x)+t_,.,F_-,(x)+t_,_'d.,-_(l-x)
dZ

(7-16)

_---_) =SCt.,(x) - t,,(x) ] (7-17)

giving two equations involving the unknowns t,o(x) and t,j(x), and having
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FIGURE 7-6.--Tube wall temperatures resulting from combined radiation and convection

for transparent gas flowing in uniformly heated black tube for S = 0.02, H = 0.8, t,. 1= tg,,
=1.5, and t_.==ftg.=.
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six parameters: S, H, l, tr, _, tr,2, and tg,,. The configuration factors
can "be obtained from known disk-to.disk factors by the technique of

example 2-19 and equation (2-57), and they are given in example 3-8.
To solve equations (7-16) and (7-17), it is noted that equation (7-17)

is a first-order linear differential equation, which can be solved in general
form by the use of an integrating factor. The boundary condition is that

at x--0, the gas temperature has a specified value tu,_. The general
solution is then

f0 _"
ty(x) =Se -sz eSetw(_)d_ + tu, ,e -sz (7-18)

This can be substituted into ecmation (7-16) to eliminate tg(x) and yield

the following integral equatie, for the desired variation in tube wall

temperature:

ft_ + Ht,--HSe -sz e)_tt,,(_)d_--Htg, ,e -sz
_0

+ z + t_l ft.o f,.zt,.(e)ar._,,¢#-x)

+ t_. iF_-l(x) + t_. _F___( l--x) (7-19)

Solutions to equation (7-19) have been obtained by Perlmutter and
Siegel (ref. 20), and some representative results, as calculated by

numerical integration, are shown in figure 7-6. Note that the predicted
temperatures for combined radiation-convection gall below the tempera-

tures predicted for either convection or radiation acting independently.
For a short tube, the radiation effects are significant over the entire tube

length, and for the parameters shown, the combined mode temperature

distribution is similar to that for radiation alone. For a long tube, how-
ever, the combined mode distribution is very close to that for convection

alone over the central portion of the tube. The heat transfer resulting

from combined convection-radiation is more efficient than by either
mode alone. This means that the wall temperature distribution predicted

in the combined problem will always lie below both of the distributions
predicted by using either mode alone.

EXAMPLE 7--6: If the tube in example 7-5 had a diffuse-gray interior

surface, rather than being black, what would be the governing energy
equations?

Using the net radiation method, a heat balance on an area element

at X gives
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qw(X) + q,(X) _qo(X) + h[T.(X) -- Tu(X)] (7-20)

where q_ and qo are the incoming and outgoing radiation fluxes. For

the outgoing radiation flux, there can be written

qo (X) ffi_crT_ (X) + ( 1 - 4) q, (X) (7-21)

Equations (7-20) and (7-21) are combined to eliminate q_ with the follow-

ing result:

qo(X) ffi 1 --E {hiT. (X) - Tg(X) ] - q.} + crTb(X) (7-22)
e

The analysis leading to equation (7-14) applies for the gray case if the

radiation leaving the surface crT_ is replaced by qo. This gives

h[T.(X) -To(X)3 +qo(X) =q.+ qo(_)dFax___(JX- _[)
-0

+ o'T_. tF_-x (X) + o'T 4, zF,_r-2 (L --X) (7-23)

Equation (7-15) is unchanged by having the wall gray. Thus equations
(7-22), (7-23), and (7-15) comprise a set of three equations in the

unknowns: T,(X), qo(X), and T_;(X). Some numerical solutions for this

system of equations are given in reference 21.

7.5 RADIATION COMBINED WITH BOTH CONDUCTION AND CONVECTION

The basic elements of the derivations in sections 7.3 and 7.4 can

be combined when both conduction and convection are present in a

radiating system. The energy equations become more complicated as

they now contain both temperature differences arising from convection
and temperature derivatives arising from conduction. There are also a

greater number of independent parameters. These will arise from such

things as the convective heat transfer coefficients, thermal conductivity
of the body, and body dimensions: In other words, the quantities that

govern both convection and conduction. As a result of these complexities,
there are no "classical" solutions or solution methods, and results must

usually be obtained using numerical techniques.
The basic ideas involved will now be given by discussing a few specific

problems. Additional information and results are given in references
24 to 30.

.............. 2 " " .........................
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EXAMPLE 7--7: Consider again the tube in example 7-5. The tube is

uniformly heated, perfectly insulated on the outside, and has a black
interior surface. Gas flows through the tube, and the convective heat
transfer coefficient h is assumed constant. The axial heat conduction

within the tube wall will now be included. The tube wall has thermal

conductivity kw, its thickness is b, the tube inside diameter is Dl, and the
outside diameter is Do. The desired result is the temperature distribution

along the tube length. The tube wall is assumed sufficiently thin so that
the temperature at each axial position is constant across the wall
thickness.

The energy balance as given by equation (7-14) must be modified
to include axial wall conduction. The heat conduction into an elemental

length of the tube wall is

Qc,,ffi-kw _r(D_o-D_) dT, o(X)
4 dX

while that conducted out of the element is

w (D_ - D[ ) d ) _ dX_Q_. , _- k_ 4 --

The net gain of the energy by the element from conduction is then

kw_r (D2°-D_) anT_(X) dX
4 dX _

This term is divided by the internal area of the ring ¢rD_ dX and is then

added to the right side of equation (7-14) to obtain the energy balance

h[Tw(X) --Tg(X)] + o.T_(X) = qw + k,o (D_- D_) aaTw(X)
4Dl dX _

f=;o o'T_ (__) dFax__ ( IX - -_l) + crT4,, 1Fax-, (X) + crT4,.2Fax-2 (L - X)+

(7-24)

As in connection with equation (7-16), all lengths are nondimensionalized

by dividing by the internal tube diameter, and dimensionless parameters

are introduced. The conduction term yields a new parameter

.: ,<- (?)"'4q,_Di LkDU J
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For thin walls where (Do--DO�2 ffi b ,_ 1, this reduces to

N k_b

which is the parameter used in some of the references.
The dimensionless form of the energy equation is

d_t" (x ) re:_(x)+H[tw(x)--ta(x)]---l+N d_ I- _ ({:) dF_-a¢(x-- _:)
0

+ (7-25)

The energy equation for the fluid within the tube element remains

dtg(x) --_S [tw(x) -- tg(x) ] (7-26)
dx

as in equation (7-17). These equations may be further combined as in

equation (7-19).

Hottel (ref. 24) has discussed this problem in terms of slightly dif-
ferent parameters. He obtained a numerical solution before the common

I Computedcombined resultsConduction and convection only
3. I[- Curve fit through combinedresults

0L
ff 3. "" -"-

.I/IF _%

/ \
i

t 1 i I 1
2 3 4 5

Dimensionlesspositionalongtubewall,x • X/Di

_L

c

2.9

2,8

0 I

FIGURE 7--7. -- Wall temperature distribution for flow of transparent fluid through black tube
with combined radiation, convection, and conduction for l-5, S=0.005, Nffi0.316,

Hffil.58, t,.l =tg.l=0.316, and tr. zffit¢.2.



ENERGY TRANSFER BY COMBINED MODES' 235

utilization of high-speed computers. For one set of parameters and for

five ring-area intervals on the tube wall, the solution required 10 hours
of hand computation. This illustrates the complexities arising in such

problems. The results are shown in figure 7-7 in terms of the parameters
derived here.

Two additional factors that enter this problem are the conduction

boundary conditions. The solution of equation (7-25) requires two

boundary conditions because of the arbitrary constants introduced by

integrating the d_tw/dx 2 term. These boundary conditions depend on

the physical construction at the ends of the tube which determine the
amount of conduction present. In reference 25, some detailed results
were obtained. It was assumed, for simplicity, that the end edges of the

tube were insulated, that is,

=dT_._ =0
x-o

The extension was also made in reference 25 to let the convective heat

transfer coefficient vary with position along the tube. This would account
for the variation of h in the thermal entrance region.

EXAMPLE 7--8: As a second type of problem including combined

conduction, convection, and radiation, consider a fin as shown in figure

7-8. A gas at Te is flowing over the fin and removing heat by convection.

.J

b ¢

":'i ........
: X

¢/
J

FIGURE 7-8.-Fin of constant cross-sectional area transferring energy by radiation and

convection. (Flowing gas and environment at 7",..)

The environment to which the fin radiates is assumed to be at Te also.

The cross section of the fin has area A and perimeter P.

An energy balance on an element of length dX yields

k.4 d:T '_" ecr(T4- T_)P dX + hP dX(T- T_)
-_-: a,_ =

(7-27)
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The term on the left is the net conduction into the element. The terms

on the right are the radiative and convective losses. The radiative

exchange between the fin and its base is being neglected. This equation
is to be solved for T as a function of X. Multiply equation (7-27) by

[1/(kA dX)ldT/dX to obtain

aaT dT dT hP dT
-_ _=_-_- (T4-- T_) -_+-_ (T- T_) -_

This can be integrated once to obtain

(7-28)

where C is a constant of integration.

As a simplified example, let Te ="0 and let the fin be very long. Then for
large X, T(X) _ 0 and dT/dX--_ 0, and from equation (7-28), the constant

C----0. Then solving for dT/dX results in

dT 2
_=___( Peo-..__.T_ +_.hPT=)l/= (7-29)

The minus sign has been used when taking the square root since T
decreases as X increases. The variables in equation (7-29) can be

separated and the equation integrated with the condition that T(X)= Tb

at X=0,

fo x f rT dT
dX=- b T (2Pecr_ Ta..k2y._)h1:_1/2

Integration yields

Xffi_ M__/2 [In (GT_+ M) '12-M_/2(GT_b+ M) ,12+ M1/2

(GT 3+ M) 1/2__M1/_]
In (GT3+M)_ J (7-30)

where G= (2/5)(Peo'/k.d) and M=hP/k,4. Hence, for this simplified

case, a closed-form analytical solution for the temperature distribution

is obtained.
A detailed treatment of this type of fin problem with both convection

and radiation from the surface is given in references 31 to 33.

. .................................. 7 .............
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7.6 COMPUTER PROGRAMS FOR MULTIMODE ENERGY TRANSFER

Except in simple geometries, the solution of problems involving

radiation transfer plus energy transfer by other modes becomes exceed-

ing]y difficult. Examination of the examples will show that, for this

reason, only fairly simple cases have been solved here. Because of the

mathematical difficulties involved, a number of generalized finite-

difference computer programs have been developed for multimode prob-

lems, and some of these are outlined in references 34 to 40. Such

programs allow "cookbook" solution of problems that fall within their

limitations. Each program referenced allows consideration of combined

conduction, radiation, and convection, and most of the programs also

allow inclusion of the effects of internal energy generation, flow, tran-

sients, variable properties, mass transfer, changes of state, heat capacity

in the media considered, and three-dimensional geometries. The refer-

enced programs are all written in one of the Fortran languages, and each

uses an electrical network analog as a method of formulating the mathe-

matics and determining values of the input parameters. Though impres-

sive in their generality, these programs are limited by the common

assumption of diffuse-gray surfaces, and each has its individual peculi-
arities and limitations. Whether the researcher cares to take the time to

learn the unusual characteristics of a given general program and adapt

his particular problem to its limitations, or instead write a specific pro-

gram of his own, is a matter for each person to decide.

7.7 CONCLUDING REMARKS

The treatment of multimode energy transfer problems involving

radiant transfer through transparent media has been examined. Con-

ceptually, the treatment of such problems involves only the careful

construction of energy balance equations over finite areas or on discrete

elements. The chief difficulty then becomes the mathematical treatment

of these energy balance equations.
Many mathematical methods have been applied with some success

to these multimode problems. When a problem of this type is encoun-

tered, the techniques that have been successful for similar problems in

the literature should be examined. These range from brute force finite-

difference formulations through quite sophisticated analytical treatments.

The reference list at the end of this chapter gives representative problems

and solution techniques along with some expositions of specific mathe-

matical techniques.

323-003 0-69-17
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Appendix A

Diffuse Configuration Factors

This appendix contains tables of references to over 150 configuration
factors that are available in the literature. The table is composed of

three parts. Part (a) is for configuration factors between two elemental

surfaces, part (b) gives references for factors between an elemental and

a finite surface, and part (c) is for factors between two finite areas.
More than one reference is given for some factors, and in certain cases,

the reference in which a factor was originally derived is not given

because of the difficulty in obtaining such earlier works.
The factors are arranged in the following manner: Factors involving

only plane surfaces are given first, followed by those involving cylindrical

bodies, conical bodies, spherical bodies, and more complex bodies.
Within each such category, progression is made from simpler to more

complex geometries.
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TABLE A-I.--TAsLE Or REFERENCES FOR CONFIGURATION FACTORS

(a) Factors for two differentia] elements

Conf_u-

ration

number

A-/.

A-Z

A-3

A-4

_5

Geometry

Twoelemental areas in

arbitrary configuration

Twoelemental are|s lying
on oarzdlel9eneratln(j
lines

E]ementalarea to infinitely

Ion9 strip ot differentJai
width lyin9 on paraitel
9eneratir, q llne

Infinitely lot',9strip of
differsnttal width to simi-
lar strip on parallel _n-
aratlnq line

Strip of finite length and
differential width to strip

ol samelength on parallel
glnerdtl ng line

ConfkJuratton Source

(2-8)

ExampleZ-3

ExampleZ-4
and ref. I

F.xamp/e2-4
and ref. L

Ref. Z
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TABLE A-L--TABLE OF REFERENCES FOR CONFIGURATION FAcToRs-Continued

(a) Factors for two differential elements-Continued

Conflgu-
ration

number

A-6

A-7

A-8

A-9

Geometry Configuration Source

ExampleZ-19Corner element of end of

square channel to sectional
wall element on channel

Extertor element on tube
surface to exterior element

on adjacent parallel tube of
samediameter

Exterior element on parft-
tlened tube to similar ele-

ment on adjacent parallel
tube af samediameter

T.m rlng elements on inte-
rlord right clrcular
cyll nder

Ref. 3

Rsf. 3

Refs. 4. 5
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Taet_ A-I.-T_L_ or REFEit£NCES FOR CONFIGURATION FAcToRs-Continued

(a) Factors for two differential elements-Continued

Co#k]u-
ration

...number

A-tO

Geometry Conr/qur_/on Source

Ref. 6Sand of dlfferenti_ length

on insideof cylinder todiffer-
ential ring on cylinder base

A-11 Rf_J element on fin to ring
element on adjacentfin

A-_ Twoelemnts on Inter|or ot

right circular cone

r

Ref. I

Rets. 8, 9
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TXSLE A-I.--T_LZ or REFERENCES FOR CONFIGURATION FAcToB$-Continued

(a) Factors for two differential elements-Concluded

Con_u-
ration

number

A'I)

A-14

A-I)

A-16

A-17

Twodifferential elements
on interior of spherical

cavity

Band on outsideof sphereto
bandon another sphereof
sameradius

Twodifferential elements
on exterior of toroid

Elementon exterior of

toroid to ring element on
exterior of torold

Elementon exterior ot

torold to boo9element on
exterior of toroid

Ref. 12

Ref. I)

Ref. 13

Rd. 13



"_'.4

24,8 THERMAL RADIATION HEAT TRANSFER

TAat_ A-I.-TAst_ or R_I:ERENC_S FOR CONFIGURATION FAcTORs--Continued

(b) Factors for exchange between differential element and finite area

Contlgu-
ration

number

g-I

6-Z

B-3

B-4

Geamem/ Contkjur_ion Source

Refs. 14-16Plane element to plane extendln9

to Infinity and IntersKflng plane
of element at angle @

Piano strip element of any length
to plane at finite width and Inflnlte
length

Plane elemnt to Infinitely long
surfa-e of ar_trery shapegener-
atlid by line mov(_ i)arailel to
Itself and plane of element

Strip element of finite length to
rectangle in plane i_lrallel to
strip; strip is opposite_oone
e_e of rectangle

f//////////J
/

Example2-7

ROfs. 14-18

Refs. 5, 14-16
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TASLEA-I.-TABL_OFREFERENCESFORCONFIGURATIONFACTORS--Continued
{b)Factorsforexchangebetweendifferentialelementand finite area-Continued

con_,,-!
ratlon

number

B-5

B-6

B-T

B-8

Geometry Conflgur_on Source

Strip element of finite length
to plane rectangle that inter-
c_ts planeof strip at angle 4_
and with one _kje parallel to
strip

Plane element to plane rec-

tangle; normal to element
passesthrough corner of
rectangle;,surfaces are on
parallel planes

Area element to any

parallel rectangle

Plane element to plane rec-
tarxjl_ p4anescontaining two
surfaces intersect at angle _)

S//////J
I

I

///

Rofs. 5 (for

@ - 90° onlyl,
14-16

Reds.I,5,
14-17,

19,m

ROf. 1

Rids. I, S
(for _.90 °

only), 14-16
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T_LE A-I.--TAsLS OF REFERENCES FOR CONFIGURATION FACTORs--Continued

(b) Factors for exchange between differentia[ element and finite area-Continued

Confl_u-

ration
number

8-9

B'IO

8"II

B'I2

C,_ometry Confkjur_ion Source

Plane element to right triangle ;_ Example2-17
in oiane _ara#lel to plane of tie- # I I
monl; normal to element oasses I t I

through vertex of triangle _ _ --i'-'J
--. -......, _3, /

Plane element to plane area
with addedtriangular area;
element is oncorner of rec-
tangle with one side in common

with plane area at angle
/

,/
/

Samegeometry as preening
with triangle reversed relive
to I_ane element

Plane element tocircular disk

on plane Parallel to that of
element

I

/

Rats. 14"16

Rats. 14-16



APPENDIX 251

TABL£ A-I.-T_L_ OF REFERENCES FOR CONFIGURATION FACTORs-Continued

(b) Factors for exchange between differential element and finite area-Continued

Conflgu-
ratlon

number

Geometry Configur_on

8-13 Plane etement to segmentof
disk in plane parallel to element

B-14

B-IS

B-16

Plane element tocircular disk;

planes containing element and
disk intersect at gO°, and cen-
ters of element and disk lie in

plane perpendicular to those
containing areas

Strip element of finite length to
perpendicular circular disk Io-
i:atld at one end of strip

Plane element to ring area in
plane perpendicular to element

.J
I"

,q

I

-_Q

ource

Ref. 5

Refs. 5.

14-16,18,
21 and

example2-6

Refs. IS,21

Example2-9
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TJ_SL_ A-I.--TAsL£ Of REFERENCES FOR CONF(CUS._T[O_ FxcToss-Continued

(b) Factors for exchange between differential element and finite area-Continued

Configu-
ration

number

B'I7

6"18

8-19

B-m

Geometry Configuration Source

Radial and wedgeelements on Refs. ]9, _1
circle to disk in Parallel plane

Area element to Parallel ellip-
tical plm

Phlne element to right circular
cyflnder oi finite length; normal
to element _sses through center
of one end • cylinder end Is per-
pendicular to cylinder axis

13ementis at end of wall on in-

sideof finite length cylinder en-
closing concentric cylinder of
samelength; factor Is from ele-
ment to inside surface of outer

cylinder

i
I

!

t

ROf. 17

R_s. 5.
14-16
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TASL_ A-I.--TAsLZ Or REFERENCES FOR CONFIGUI_.TION FACTORs--Continued

(b) Factors for exchange between differential element and finite area-Continued

Conligu-
ration
number

8-21

6-22

8-23

B-24

Geometry Configuration Source

E]ementet strip ot finite length to
parallel cylinder of samelength;

: _rmals at ends of strtp pass

i through cylinder axis

Strip or element on plane parallel
to cylinder axis to cylinder of fi-
nite length

infinitely tong strip oGdlfferen-
Ual width to I_raliel semlcyllndor

! Inflntl strip on any side ol any
ot t_rw fins to tube or environ-
ment, and infinite strip on tube
to fin or environment

Refs. l& :n

Ref. 22

Rat. 23
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TABLZ A-L-TABLE OF REFERENCES FOR CONFIGURATION FAcToRs-Continued

(b) Factors for exchange between differential element and finite area-Continued

Contigu-
ration

numder

B-26

B-_

C,,4om_'y I Source

R_s, ]8,IElment and strip element on

Interior of finite cylinder to
Interior of cylinclr/cal surface

Bemenhll strip on inner suro
face of outer concentric cylinder

to surfr..e of oute__[concentric
cytlnder

I£te,_! _rlpon inner sur-

of out*t concentric cyll_k,r
toeither annular end

'Bement on inside of outer finite

concentric cylinder to inside
cylinder or annular end

Con_urat|on

=.

II I

It I

Refr,, 18,



APPENDIX 255

TABLE A-[.-TAs_ OF REFERENCES FOR CONFIGURATION FAcTOSS-Continued

(b) Factors for exchange between differentialelement and finite area-Continued

ConfkJu-
ratlon

number

B-29

B-30

B-31

S|rfp element on exterior of
inner finite lengttl concentric

cylinder to inside of outer
cylinder or to annular end

Geometry Configuration Source

Refs. 11 21

I I_11

Slrip on plane inside cylinder
of finite length to inside ol
cyll rider

Area element on interior of

cylinder to baseol secondcon-
centrl¢ cylinder; cylinders are
one _ other

B-32 Ring element on fin to tul_

@
Reis. 18. 21

Refs. lg, Zt

Rof. 7

323-003 0-69m 18
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TASLJZ A-I.--TAULZ Or REFERENCES FOR CONFIGURATION FACTORS--Continued

(b) Factors for exchange between differential element and _nite area-Continued

Configu-
ration

number

8"33

B-34

B-36

Geometry Configuration

Ring element on interior of
right circular cylinder to
end of cylinder

Exterlor element on tut)e
surface to finite area on

,_jacent parallel eubeof
same diameter

_darlor element on tui_

surface of Dartitionad tube
to finite area on adjacent
parallel tube of same
diamet_"

Elementon wall of right
circular cone to baseof

con#

Source

R_. 4

ROf. 3

Rif. 3

Ref. Z4
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TXBL_ A-I.--TsJSLZ OF REFERENCES FOR CONFIGURATION FACTORs--Continued

(b) Factors for exchange between differential element and finite area-Continued

Configu-
ration

number

B-37

B-38

Geometry Configuration Source

Any Infinitesimal element on /e_.. _ Ref. [ and

interior ot sphere to any finite _ section

element on interior ol same 3. 4. 2. 5

sl_ere

Spherical point source to rK- y_Jl_'4_/////// Refs. L

tangle. Point source is on one 14-16
corner of rectanglethat Inter-
sectswith receiving rectangle at >
angle •

B-_/ Aru element to sphere _--d_- - - Refs. 13,
r_ 2_-27

©
B-40 Area element to axisymmatrlc

surf-', - I_dbolol¢ cone.
cylinder (tormulatlon given -
factors are notevaluata_

Ref. 28
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TABLE A-I.--TASLE or REFER[NCrS for CONFIGURATION FAcTORS--Continued

(b) Factors for exchange between differential element and finite area-Concluded

Conf@u- I

rz4lon

number

8-_

B-_

B-_

6-44

B-45

£_omeOry Can(_gura_n Source

Bement on interior (or ex-

todorl of any axisymmetric

bodyof revolution to I_nd
of finite length on interior
Ior exterloO

Bement on exterior of
torotd to toroidat segment
of flnile width

Elementon exterior of

toro/d to torofda! bar_ dt
finite width

Elementand ring element
on exterior of toroid to en-

tire exterior of toroid

Slender torus to point on

perpendicular a_ts I

Q

_efs._,_,_o

Ref. B

R_. 13

Rd. B

Ret 17

aKernel of integrals and limits ere formulated in terms of appropriate variables, but integrations
are not carried o_t explicitly.
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T_Lg A-I.--T_Lg oF REFERENCES FOR CONFIGURATION FAc'roas-Continued

(c) Factors for two finite areas

Cmflgu-
ration

number

C-I

C-2

C-)

C-4

C-_

C-6

C_omotry

Twoinfinitely long platesot
equal flnite width W end one
common e_je of [nctuclecl

angle 4,

Two Infinitely Io_g plates of
unequal width with one com-
mon edgeand Included angle
4, - gO"

finite rectangle to Infinitely
long rectangle of samewidth
and with one commonedge

Twofinite rectangles of same
width with commonedge and
included angle 4,

T_) nlCtangles with common
edgeand Included angle 4,

Two rectangles with one side
of each parallat, and with one
corner touching; planes con-
taining rectangles intersect at
angle 4,

Configuration

L..--w--_

SOUl,S

Example2o8

Ref. 15

Re£ 31

Refs.1,t9.20Itor
4, • gO=only), 5,

14-16.Za._1

Re£ 15

Ref. 15

_ef. 31 indicates that tabulatedvalues for this case are Incorrect in ell other references.

Correctedvalues are listed in ref. 3L
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TABLE A-I.-T_L_ or RElr£RENCES FOR CONFIGURATION FAcToRs--Continued

(c) Factors for two finite axeu-Continued

¢onflgu- Geomotry c_r, guritlon

ration
number

C-1

C-8

C-9

C-10

C-iI

C'12

Two rEtangles ot samewidth
wilh one Mrallel edge:,planes
containing rectangles inter-
_.-t at arRle

4

r,_,gl, .,h ooe . ,¢_?'_
parallel edge; planes contain- ,,(_A _ :J,.-ff_?-),

|_gle 4' iv 1, _/I ._."
1/ / /

Y._4_

Two Infinitely long clirKlly
I_lrallel strips of

samefinite width

Parallel. directly opposed

rectangles of samewidthand ler_

Tworectangles Fnparallel t'_'_ )
planes wlth one rectangle II _TTp _

directly oppositeportlon of
Other

Tworectangles o! arbitrary
size in parallel planes; all

y axes

Z

Source

Ref. 5 (for

# - 90°only), 15

Refs, 14, 15. 18

Refs. 15, 19

Refs, L 5. 14-16,
19, 30, 32

Refs. 1_, ]7, 32

Refs. 14. 15, 18,
32



a

APPENDIX 261

TXaLZ A-I.--TABLE OF REFERENCES FOR CONFICURATION FACTORS--Continued

(c) Factors for two finite areas-Continued

C0nfligu-
ration

number

C-13

C"14

Gimmetp/ Confkjuration

Rectangleto arbitrarily
oriented rectanigleo! arbi-
traP/size

Two flat platesof arbitrary

shapeand arbitrary orienta-
tion

C-15 finite areas on interior of
saguarochannel

C-L6

Cof?

C"18

Factordetween basesof flight
convex prism of regular tri-
angular, square, pentagonal,
hexagonal, of octagonal
cross smtton

Factorsbetween various sides,

and sidesand basesof regular
hexagonal prism

Circular disk to arbitrarily
placedrectangle in parallel
plane (using configuration
factor aligedrawith configu-
ration number C-21) u

I

0
• J"-- ---- 7

/ /

SOUITA

Ref. c33

Ref. aM

Re/. 18

Ret 31

Ref. 31

Ref. 3!)

aKernai of Integrals and limits are formulated in terms of appropriatevariables, but
Integrations are not carried out explicitly.

CAvailable as general computer programonly,
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TABLE A-I.--TAsLg or REFERENCKS FOIl CONFIGURATION FAcToRs-Continued

(c) Factors for two finite areas-Continued

Cc_flgu-
ration

number

C-19

C-Ta

C-Z1

Circle to arbitrarily placed
rm.'tangio fn plane _raliol to
normal to circle (using con-
fkJuratlon factor a_ra with
configuration number C-Zl)

C-eometry Conflgu ration Source

Ref. 35

DI_ to arbitrarily oriented

rectangle or disk of arbitrary
size

Clrcular disk to parallel right

trlangl_ normal from center
of circle pisses through one
acutl v_rtex

C-Z2 Parallel, diractly o91:x_ed
plane circullrdiRs

C-23 Directly opposedring and
_sk of arbitrary radii

®
I

Ref. c33

Ref. 35

Refs. 1, 5, 9,
14-16, 18,
19, 21

Rofs. 15, 21

CAveilebleas general computer programonly.
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TASL_ A-I.--TAaLE OF REFERENCES FOR CONFIGURATION FAcTORs--Continued

(c) Factors for two finite areas-Continued

Configu-
ration

/lumber

C-24

Geometry Configuration Sourcj

Parallel, directly opposed Refs. 14, 21 and
plane rimj areas example2-I0

C-25 Entire inner wall of finite

cylinder to ends

C-26 Internal surface of cylindrlcal
cavity to rJvlt,j opening

C-27 Inner surface of cylinder to
annulus on one end

C-2S Inner surface of cylinder to
df_ at one end of cyl|nder

C-29 Portion of Inner surface of

cylinder to remainder of inner
surtace

Re(s. 21, 37

RefL _, 37

Refs. 19, 21, 37
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TASLZ A-I.--TAaLE or REFEmZNCES FOR CONFIGUI_TION FAcrotzs--Confinued

(c) Factors for two finite areas-Continued

ConCH °

ration
nummr

C-30

Geometr_

Finite ring areas on interior
of right circular cylinders
to sq_te similar areas
and to ends

C-31 Finite areas on interior of

right circular cylln(ler

C-32

C-t_

C-M

C -35

Infinitely long cylinder to
infinite l_an_ axis of
cylin_r parallel to plane

Infinite cyllntllr to parallel
Infinitely Io_j plane of
finite width

Infinitely long plane of
finite width to infinitely
Ionq cyflnder

Infinite plane to first, second,
and first plus secondrowsof
infinitely long parallel tubes
of equal diameter

Configuration

Q
I

jC ¸

oOoOo%%
l !

Source

Rels. I¢ lq. 37

Ref. 18

RelL 14-16

Rels. 5. 14.15a

Red. 21

Refs. I.19,20

aErroneouslygiven in references. With the notation of rel. 5, should be

F l -I Z -IY
l_2-Z.y(t,m _-_ln _).
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TABUZ A-I.--TAB, r OF FOZFER[NC[S FOR CONFIGURATION FACTORS--Continued

(c) Factors for two finiteareas-Continued

Conflgu-_
ration

nunlbar

C-36

C -37

C'3g

C'_

C'40

Geometry Co_Iflguration

Finite length cylln_r to

rectanglewith one c-dcje
parallel tocylinder axis and
o( lemjth equal to cytlnder

finite cytlnder to finite

n_angle of samelength

Cytlnder to any n.,ctanglein
plane t_rpendicular to c_ln-
d,r axis luslng configuration
factor algebrawith configura-
tion number C-4_

Cylinder to any recbingle in
plane parallel to cyltn_r axis
(using conflguratton factor
algebra with configuration
number C-4_

Finite area on exterior of
cylinder to finite area on
plane parallel to cyiln_r axis

I '

I

--'7"-- 7

I, ,, / I

I: . ,." ,(

Source

Rat. 5

Ref.

Ref. 35

Rat. 35

Raf. 18
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T_LE A-I.--TAsL_ OF REFERENCES FOR CONFIGURATION FACToRs--Continued

(c) Factors for two finite areas-Continued

r.onflgu.
ration

number

C-41

C-d2

C-43

C-44

C-43

Geomelry Configuration Source

Rel. 18Finite area on exterior of

cylinder to finite anm on
smv, d l_ane

Outsl_- surface of cylinder to
perpendicular right triangle;,
triangle is in plane of cylinder
besswith one vertex oftriangle

it centerofbase

Cylinder and plane of equal
length parallel to cylinder
axls¢ plane Inside cylinder;
Ill factorsl_'vmn plane and

Inner surt_:e ofcylinder

inner surface of cylinder to
disk of same radius

Interior surface of circular

cylinder of re,qus R to _ of
radius r where r < R; dis_ is

_-pendJcular toaxis of cylinder,
and axis passesthrough center

of _sk |using contlguratlon
factoralgebra with configuration
number ¢-_

J/

®

G'
®

Ref. 35

Rels. 18, Z!

hrs. Ul. z!

Example2-11
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TASLg A-I.--TAsLE OF REFERENCES FOR CONFIGURATION FACTORs--Continued

(c) Factors for two finite areas-Continued

C0fl_U °

ration
number

C-47

C'a

C-49

C-SO

C-51

Geometry Configuration Source

Refs. 7. 18, 21Annular ring to similar
annular ring each at end
of cylinder

Factors for Interchange be-
tween fins and tube {given In

algebraic firm, untabulatecl

Finite irse on exterior of

cylinder to finite are on
exterfir of i_rallel cylinder

Cylinder of arbitrary length
and radius to rectangle. (list,,
or c_inder of arbitrary size
and orienUittan

Cylinder and platewith
arbitrary orientation

Concentric cylinders of infi-
nito length; inner to outer
cylinder; outer to inner

cytlnder; outer cylinder to
itself

ii

@

Ref. 7

Ref. 18

Ref. c33

Ret. _4

Ref. 14

aKemel of inte(jr|ls and limits are formulated in terms of appFopriatevariables, but
IntiKjratfins are not carded out exl_icitl¥.

¢Avall4_toas general computerprogram only.
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TABLg A-I.--TAJSLE or REFERENCZS FOR CONFIGURATION FACTOas-Continued

(c) Factors for two finite areas-Continued

con_u-!
ratlon I

numl_r !

C-SZ

C-_3

C-rj4

C.r_

C-_

C-F/

C_omtr_ Configuration Source

Refs, 5, 14, Ig,
ZI, 40

Inside surfaceof outer con-

centdc Cylinder of finite

length to Inner cylinder of
_me length

Inside surface of outer con-

contrlc cylinder to itsel!

Inside surtaca of outer con-

clmtric cylinder to either end
of annulus

Coeomtrlc cylinders of
different finite Iongth$ -
portion of Inner cylinder
to entinl outer cylinder

Concentric c-ylindersof
different finite lengths -
portion of inside of outer
to outside of entire inner
cytinder

Parallel cyllnde_ of _iffer-

ant radii and length - any
portions of outer curved
surfaces

Refs. 5,14,
21, 40

ROf. 21

eels. 18, Zl, a34

Ref. a34

aKameI of Integrals and limits are formulated in terms of appropriate var_abtes,but
int|gratlons are notcarded out explicitly.
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T_LE A-L--TABLE OF REFERENCES FOR CONFIGURATION FACTORS--Continued

(c) Factors for two finite areas-Continued

C0nfigu o

ratlon
number

C'_

C-_

C-60

C-61

C-62

G_metry Configuration Source

Refs. 18, 21Concentric cylinders of dll-
forent radii, _ne atopother;
factors betweeninside of upper
cylinder and Inside or baseof
lower cyiinder

Infinitely long parailel semi-
cylinders of same diameter

Flnite arm on exterior of

inner cylinder te finite arN
on interlor of concentric

outer cyllnder

Twotubes connectedwith fin

of finite thickness; length can
be finite or Infinit_ ali factors
IWa_mn finite surfaces formu-

labKIin terms of integrations
diff_'entlal strips

Twotul_s conn@;'tedwith

tapered fins of finite tl_ick-
n_S; length can be finite or
infinite; all factors between
finite surfaces formulated in

terms of integrations between
differential strips

ROf. 18

RM. Z

Ref. 2
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TASLE A-I.--TASLE OF REFERENCES FOR CONFIGURATION FAcToRs--Continued

(c) Factors for two finite areas-Continued

Configu-
ration

number

C_3

C.,M

C-_

C-(W_

Geometry Configuration Source

Ref. 2San_icll tube and fin struc-

ture of infinite or finite I
length; all factors between fi-
nite surfaces formulate_ in

terms of integrations between
differential strips

Concentdc cylinders con-

netted by fin of finite thick-
nes_ length finite or Infinlte, l
all t,_'tors between finite sur- :
facesformulated in terms of

int_jr_tions l_etweendifferen-
tial strips

Exterior of infinitely Ion9
cylinder to lntedor of con-
centric _micylinder

interior of infinitely long
semiqllnCer I tointerior of
semlcyiinder Zwhen concen-
tric parallel cylinder ) is
present

Betweenaxisymmetrlcal sec-
tions of rlght circular cone

©

Ret. 2

Example2-22

Example2-Z2

Ret$. 18,37
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T_SLZ A-I.-T,,,SL_ or REF£1_NCES FOR CONFIGURATION F*cTOsS -- Continued

(c) Factors for two finite areas-Continued

Configu-
ration

number

C-68

Geometry Configuration Source

Refs. 19, 37Bebveenaxisymmetrlcalsec-
lions of right circular cone
end baseor ring or disk on
base

C-69 Internal surface of conical

cavity to cavity opening

C-/O Entire inner surface of
frustum ot cone to enis

C'11 Rkjht circular cone of arbi-
trary sizeto rectangle, disk,

cylinder, or cono of arbitrary
sizeand orientation

C-/Z Cone to arbitrarily skewed

plate

C-73 Internal surfaceof spherical
cavity to cavity opening

Refs. 15

(fig. 6-14}.
31, 38

Refs, 36, 37

Ref.c33

Ret. a-_

aKernet of Integrals and limits are formulated in termsof appropriatevariables, but int_ra-
loonsare notCarded out explicitly.

CAvailableiS glmerel computer programonly.

323-003 0-69-- 19
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TABLE A-I.--TABL_ OF REFERENCES FOR CONFIGURATION FACTORs--Continued

(c) Factors for two finite areas-Continued

Configu-
ration

number

C-Td

Cdometry

Any finite area on interior
of sphere to any other flnite
area on Interior

C-75 Flnite sphere to rectangle

C"76

C'T/

Sl_ml to arbitrary rectangle
iusing configuration factor
signora and configuration
number C-75)

Sphere of arbitrary diameter
to disk or cone of arbitrary
size and orientation

C-78 Sphere to arbitrarily skmecl
plate

C-Tg Sphere to cyflnder

Configuration

©

!

©

Source

Section 3.4. 2..5
and ret. I

Ref. 35

Rets. c33. 35

Ret.c33

Ref. a34

Rets. c33,4X

aKernei of integrals and limits are formulated in terms of ap_'opriate variables, but integra-
Uonsare notcarried out expllcJ.y.

CAvaiiabteas general computerprogramonly.
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TAm._ A-I.--TABt.E OF REFERENCES FOR CONFIGURATION FACTORs--Continued

(c) Factors for two finite areas--Continued

CaM_JU-

ration

number

C-81

C-g2

G_meq_

Cons to sphere having same
diameter as baseof cone;,
axis M cone passesthrough
center o1sphere

Concentric spheres; inner to

outer sphere;,outer to inner
sphere;,outer sphere to itself

Anm on surface of sphereto
r_.--ton(jlein pltns par_ndic-
ular to axis of s_era

C-43 Sphere to sphere

C-84

C-85

Internal surface o( heml-
smerlcal cavity to cavity

opening

Betw_n axisymmetrlcal
sectionc4 hemisphere and

baseor dn9 or disk on base

C_f_u_tlon

©
_.4--.J

I

@

Soufce

Refs. 12, c33

Refs. 14. 15, and

example 2-D

Ref. 18

Refs. 12. c33,
41. 42 (equal
smeresl

Rdr,. t5
(fig. 6-Z_,

Rid. 37

CAvail_le as gener'l computer programonly.
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TABLE A-[.-TABLE OF REFERENCES FOR CONFIGURATION FACTORs--Continued

(c) Factors for two finite areas-Continued

Contlgu'
ration

number

C-_

C-87

C-M

C"m

Geometry

Betweenaxisymmetricalsec-
tions of hemisphere

SiSera to hemisphere

Sphere to elllpso_d

Ellipsoid of a_itrary major
and minor axes to rectangle.
din, cylinder, cone. or

ellll0emld of arbitrary slze
and orientation

C-gO From MoM)iusstrip to itself

C-gl Segmentof finite width on
loroid to uterior of toroid

C-qZ Toroidal bandof finite
width to exterior of toroid

Configuration Source

CAvailableas general computer programonly.

Refs. 18, 37

Ref. 41

Rofs. c33. 41

Ref. c33

Re£ 43

Ref. 13

Ref. 13
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TAB_ A-I.-TxB_ or REFERENCES FOR CONFI¢URATION FACTORS--Concluded

(c) Factors for two finite areas-Concluded

Co_f_u-
rali0fl

num_r

C-93

C-94

c._

Geometry

Exterior o_ toroidto itself

Torold ofarbitrary size to
rectangle, clisk, cylinder,
s_re, cone, ellipsoid, or

torold of arbitrary size and
orfentatton

Arbitrary polynomial of revo-

luttotl to rectancjle, disk,
cylln=r, sphere, cone,
ellipsoid, toroid, or oft'let
arbitrary polynomialof.
n_olution of arbitrary size
and orientation (polynomials
of fifth order or less)

C-°,6 General plane polygon to any
general plane polygonor two

i or more intersecting or ad-

joining polygons.

Conjuration

CAvail_le as general computerpregram _ly.

Source

Ref. c33

Ref.c44



"-,.4



PRECEDING PAGE BLANK NOT RLM,_D.

Appendix B

Enclosure Analysis Method of Gebhart

In chapter'3 the radiative exchange within a diffuse-gray enclosure
was analyzed by the method originated by Poljak. A somewhat different

viewpoint has been set forth by Gebhart and will be briefly presented
here. Additional discussion can be found in references 1 to 3. The

special utility in this formulation is that it yields coefficients that pro-
vide the fraction of energy emitted by a surface that is absorbed at

another surface after reaching the absorbing surface by all possible

paths. These coefficients can be of value in formulating some types of

problems. After the derivation, a correspondence between the Gebhart

and Poljak formulations will be indicated.
As in chapter 3, an enclosure having N diffuse-gray surfaces is con-

sidered, and the same restrictions are imposed here as in section 3.1.2.
For a typical surface A_ the net energy loss is the emission from the

surface minus the energy that is absorbed by the surface from all
incident sources. The emitted energy is//kE_o'T_- Let Gjk be the fraction

of the emission from surface ,4_ that reaches .4_ and is absorbed. This

includes all the paths for reaching Ak; that is, the direct path, paths by
means of one reflection, and paths by means of multiple reflections.

Thus d_rT]Gjk is the amount of energy emitted by dj that is absorbed
by .4_. A heat balance on Ak then gives

+" • " + A_rT_Gkk + " • • +Av_,vo'T,_G._k)

N

j=l

The Gkk would generally not be zero since, even for a plane or convex
surface, some of the emission from a surface will be returned to itseff

by reflection from other surfaces. Equation (B1) can be written for each
surfacei this will relate each of the Q's to the surface temperatures in
the enclosure. The G factors must now be found.

The quantity Gjk is the fraction of energy emitted by Aj that reaches

dk and is absorbed. The total emitted energy from A_ is A_jo'T_.. The
portion traveling by a direct path to A_ and then absorbed is Ajejo'T]Fj-k¢_.,
where for a gray surface, e is equal to the absorptivity. All other radiation

277
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from ,4_ arriving at Ak will first undergo one reflection. The emission

from d._ that arrives at a typical surface ,4, and is then reflected is

Aj_jo'T]Fj_,p,,. The fraction G,k then reaches Ak and is absorbed. Then
all the energy absorbed at A_ originating by emission from ,4_ is

Dividing this energy by the total emission from Aj gives the fraction

Gjj, = F.j-k_k + Fj-,p,Gz_, + Fj-2t_G.,k

+ • • • + Fj-kpkGkk + • • • + Fj-,vpNGNk

By letting j take on all values from 1 to N, the following set of equations
is obtained-

Glk = Fl-kEk + F,-lp_GIk + F,_2p_G..'k

+ " " " + F_-kpt.Gkk + " " " + Fl-,vpNG,v_

Gzk _ Fz-k_ + F_-lpGt_ "t"F*.-2p.ZG_k

+ • " • + F..-kpkGk_ + • • • + F2-ZcpNGN_

Glck = FN-_k + F,v-|ptG|k + F,v-_p.zC,_

+ " " " +FN-_p_G_+ • " " +FN-NpNGN_

(B2)

Equations (B2) can be solved simultaneously for G,_, C_ ..... G.vk.

Equation (B1) then relates Qu to the surface temperatures. The k index

in equations (B1) and (B2) can correspond to any of the surfaces in the
enclosure.

At the end of section 3.3.2, it was mentioned that matrix inversion

can be applied to equations (3-19) to yield each Q as a weighted sum of

T_'s. The coefficients obtained by the matrix inversion thus correspond

to those in equation (B1). This shows the correspondence between the

method described here and that in chapter 3.

REFERENCES

1. G_.BHAa'r, R.: Unified Treatment for Thermal Radiation Transfer Processes-Gray,

Diffuse Radiators and Absorbers. Paper No. 57-A-34, ASME, Dec. 1957.
2. Gr,_Hxlvr, B.: Heat Transfer. McGraw-Hill Book Co., Inc.. 1961, pp. 117-122.
3. GgnH._r, B.: Surface Temperature Calculations in Radiant Surroundings of ._rbitrary

Complexity-for Gray, Diffuse Radiation. Int. J. Heat Mass Transfer, vol. 3, no. 4,
1961, pp. 341-346.



Appendix C

Conversion Factors

Tables of conversion factors between the inks and other common

systems of units are given in tables C-I to C-III of this appendix.

REFERENCE

I. MECHTLY, E. A.: The International System of Units. Physical Constants and Conversion

Factors. NASA SP-?012, 1964.
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TABLE C-II[.--CoNVERSION FACTORS FOR ENERGY FLUX

cal/(secXcrn z) Btu/(hrXh t) W/m z erg/(secXcm z)

I czl/(sec)(cmz)"" ..........
1 Bm/(hr)(hz) == .............
1 Wire 2......................
I erg](sec)(cmt)...........

1
7.525X 10 -s
2.388 x 10-"
2.388 x 10 -s

1.329 x 104
1

0.3174,
3.174 x 10 -4

4.187 x 104
3.152

1
10-"

• Based on lntemafionad Steam Table.

4.187 x 10'
3.152 x 10 _

10"
1
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Index

Absorption efficiency, 166

Adiabatic surface, 150

Algebra, configuration factor, 30

Approximate separable kernel, 99

Areas of enclosure, 67

Band energy approximation, 156

Black enclosure, 7, 59

Blackbody enclosure, 95

Bundle,.energy, 4, 191

Cavity

conical, 206, 207

spherical, 104

wedge, 161

Combined modes, 4, 217, 232

computer programs, 237

Combined radiation-conduction

coupled, 218

uncoupled, 217

Concentric cylinders

diffuse, 114

specular, 112, 114

Concentric spheres

diffuse, 75, 114

specular, 112, 114

Conditional probability distribution, 186

Conduction, 217

Configuration factors, 7, 12

algebra, 30

contour integration, 46

crossed-string method, 43

differential area to differential area, 13

differential to finite area, 19, 47

differentiation, 55

in enclosures, 39

errors, 34

finite area to finite area, 26, 52

Monte Carlo method for. 204

reciprocity, 14, 21, 27, 35, 123

reciprocity, table, 29

specular surfaces, 117

table of references, 241,244

Conical cavity, 206, 207

Contour integration, 46

Convection, 227

Convergence

in Monte Carlo solutions, 209

in numerical integration, 226

Conversion factors, table, 279

Coupled modes, 218

Crossed-string method, 43

Cumulative distribution function, 184

Curved specular surface, 139

Differential element

configuration factor, 13, 19

Differentiation of configuration factors, 55

Diffuse

enclosures, 67, 90

surfaces, 133

Diffuse configuration factors, table, 241,244

Diffuse-gray

enclosures, 90

surfaces, 67

Diffuse-nongray, 147, 149

Diffuse-spectral surfaces, 149

Directional surfaces, 5, 162

Directional-gray surfaces, 162

Directional-spectral surfaces, 169

Disk, 22, 32

Electromagnetic theory, 1S1

Enclosure, 1

black, 7, 39, 59

gray-diffuse, 67, 70

ideal, 2

nonideal, 3

radiation exchange, 1, 7

with diffuse spectral surfaces, 149

with specular surfaces, 110

with specular and diffuse surfaces, 129,

144

Enclosure equations, table, 90, 114

Energy balance

diffuse-gray surface, 71

spectra] surface, 150

Energy bundle, 191

Energy exchange

between differential areas, 10

between differential and finite area, 21

between finite areas, 29

summary table, 29

283
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Environment temperature, 92

Errors

configuration factors, 34
Monte Carlo calculations, 188

Exchange factors, 137, 205
Fin, 219, 223, 235

Fin efficiency, 221
Finite area configuration factors, 26, 52

GebharCs method, 71,277

Geometric configuration factor, 13

General computer programs, 237

Gray surfaces, 67

Grooved surfaces

diffuse, 168

specular, 121,168

directional, 164. 168

Heat flux specified on all surfaces. 89
Herschel, Sir William, 3

Hole, radiation from, 94

Hottel, Hoyt C., 43, 70

crossed-string method, 43
Images, 115

Incoming radiant energy, 71
Insulated surface, 67, 150

Integral equation solution methods

numerical, 97

separable kernel, 99

Taylor series, 103

variational method, 102

Integro-differentiaI equations, 4
Intensity. 9

Interchange, 10

Interference. 5

Kernel, 86

Laplace equation, 181
Lunar radiation, 4, 144

Marginal probability distribution, 186

Markov chain, 180

Matrix inversion, 81
Monte Carlo

configuration factors, 204

directional and spectral surfaces, 191,
2O8

energy exchange, 191
table of relations, 198

Net radiation method

finite areas, 70

infinitesimal areas, 83

specular and diffuse surfaces, 129

Newton-Raphson method, 226
Nondiffuse surfaces, 162

Nongray surfaces. 153

Nonisothermal surfaces, 84

Nonlinear problems, 218
Nonlinear simultaneous equations. 226

Notation

genera], 4
specular configuration factors, 117

Numerical integration, 97

Outgoing radiant energy, 71, 79

ParaLlel heat transfer modes, 213

Parallel plates

diffuse, 73, 114, 151

directional gray, 162

gray. 73, 95, 114

spectral. 151
specular, 110. 117

Partial view. 119

Prescribed surface heat flux, 89

Prescribed surface temperature, 77, 86
Photon bundle, 191

Poljak, G.

net radiation method. 70, 71

Probability distribution
conditional, 186

cumulative, 184
marginal, 186
normal, 193

Probability density function, 183
Radiosity, 72
Random numbers, 183, 187

Random number generation, 187
Random walk, 180

Ray tracing, 115
Reciprocity

configuration factors, 14, 21, 29
specular exchange. 123. 128

Reflectivity
diffuse, 68

specular, 110, 114

Roughness, 168
Restrictions for enclosure theory, 67

Semigray approximation, 160

Separable kernel. 99
Series heat transfer modes, 213

Solar, 3, 148, 161

Solid angle, I0, 13

Spectral]y selective surfaces, 3, 69, 148
Specular and diffuse enclosure, 129

Specular surfaces, 69, II0

configuration factors, 117, 123
curved, 139

exchange factors. _37. 141

radiation between, 117



Specular tube, 140

Spherical cavity, 104
Standard deviation, 190

Stratified sampling, 190

Strip, 16
Sun. 11

Surfaces

gray, 67, 85, 109
diffuse, 67, 85

nongray, IS3

nondiffuse, 162
of enclosure, 67

specular, 109
Tables

configuration factor references, 241,244

configuration factor relations, 29
conversion factors, 279

ener_ exchange in simple enclosures,
114

Monte Carlo relations, 198

INDEX 285

Taylor series, 103
Temperature of heated radiating tube, 91

Total energy, 149

Transients, 4, 68, 113, 222
Tube

radiating, 91,140

radiation and convection, 227
radiation, convection, and conduction,

233

specular, 140

Tungsten, 151

Uncoupled modes, 217
Vacuum bottle, 112

Variance, 189

Variational method, 102

Wedge groove, 17, 24, 161
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